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1 ABSTRACT 

1.1 OBJECTIVE 
Military and non-military land-use demands can adversely affect habitat connectivity for 
endangered and at risk animal populations on military installations and surrounding landscapes.  
Meeting legislative requirements regarding the protection and recovery of these species on 
Department of Defense (DoD) lands likely requires not only the protection of primary habitats, 
but adequate management of habitats that promote dispersal between habitat patches.  

The specific goals of the project are 1) to understand dispersal patterns of four endangered or at-
risk animal species on Fort Bragg: The red-cockaded woodpecker (RCW), Saint-Francis satyr 
(SFS) and two at-risk amphibians; 2) model and map the connectivity of landscapes on and 
around Fort Bragg for the study animals; 3) Evaluate the ability of the red-cockaded woodpecker 
to serve as a surrogate to guide management of landscape connectivity for multiple species; and 
4) Develop a modeling strategy and spatial decision-support system that will allow wildlife 
managers to examine the influence of habitat management practices on connectivity.    

1.2 TECHNICAL APPROACH 
To achieve our objectives, we used a simulation modeling approach.  First, we collected 
movement data on each target species using a combination of experimental and observational 
techniques. Next we synthesized these movement data into general rules that describe how 
landscape features influence dispersal.  Then we mapped these features across the study area 
using remote-sensing data and ground-based inventories.  These empirical data allowed us to 
parameterize and validate dispersal simulations for each of our target species and use those 
models to predict the relative importance of dispersal habitat use for each species across the 
study extent.  We then used a reserve-design algorithm to find the most important dispersal 
habitats across all of our target species and evaluate RCW’s ability to serve as a suitable 
management surrogate for the others. 

1.3 RESULTS 
The target species differ drastically in their overall dispersal ability.  We found that RCW 
populations are highly connected on Fort Bragg, but are less connected in the surrounding 
landscape.  Our other target species have limited dispersal ability and dispersal of these species 
from known populations off of the installation itself is probably rare. Small areas near current 
populations of SFS and amphibians are also important dispersal habitats for RCWs, but overall 
the patterns of dispersal habitat use are widely divergent across species. On private lands, 
conservation strategies intended to preserve or improve connectivity for RCWs will only benefit 
other species if the areas conserved are extensive. 

1.4 BENEFITS 
This project has created new knowledge about habitat connectivity for the target species that can 
be used by DoD to manage their populations more effectively.  We have also created a multi-
species connectivity evaluation framework that may be generally useful in guiding habitat 
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management for DoD installations that harbor multiple species of conservation concern. The GIS 
toolbox that we have developed, called “CONNECT”, will allow DoD wildlife managers and 
others to model connectivity for a variety of species, evaluate the effects of multiple habitat 
management options on connectivity, and prioritize lands for connectivity across multiple 
species. 
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2 OBJECTIVE 
The main objective of our project was to develop a set of methods for prioritizing land parcels in 
terms of their value for conserving connectivity for multiple species of management concern. We 
focused our attention on a group of rare, threatened, and endangered species with divergent life 
histories, range requirements, and dispersal abilities (red-cockaded woodpecker, St. Francis’ 
satyr butterfly, Carolina gopher frog, and eastern tiger salamander). Our objectives were to 
model habitat-mediated dispersal for each of these species, map the value of the landscape for 
connectivity conservation, and integrate individual species models to produce maps of multi-
species connectivity value. The objective of this process was to rank land-parcels according to 
their priority for connectivity conservation. Part of this process, and an additional goal of the 
project, was to develop software that will help land-managers integrate relevant data and 
generate useful products for assessing the relative value of land parcels for multi-species habitat 
connectivity conservation.  

2.1 BACKGROUND 
2.1.1 CONSEQUENCES OF HABITAT FRAGMENTATION 
Most landscapes contain a mosaic of habitat types, presenting different levels of difficulty for 
dispersal by native species, depending on each species’ habitat affinities, behavioral attributes, 
and risk of mortality while dispersing. Anthropogenic land uses change the quality and topology 
of landscapes, often leading to the reduction of habitat area as well as habitat fragmentation, both 
of which are recognized as major threats to biodiversity and causes of species loss globally 
(Wilcove et al. 1998). Reduction of total habitat area, increase in spatial isolation of remaining 
habitat fragments, and increased resistance of intervening landscapes to dispersal can result in 
reduced population sizes, reduced flow of individuals and genes between populations, and 
greater risk of extinction of native species (Fisher and Lindenmayer 2007). 

2.1.2 RELEVANCE TO DOD 
The problem of habitat fragmentation and reduced habitat connectivity is an especially salient 
issue pertaining to military installations and DoD’s mission for sustainable management of 
wildlife resources. Many military installations contain large proportions, and large areas of 
natural habitat. These habitats are becoming increasingly insular as continuing land-use changes 
beyond installation boundaries convert natural or semi-natural habitats into residential, 
commercial, or public use developments. As an example, 49% of Fort Bragg, NC is covered in 
evergreen forest, which is twice that found in the 20 km wide buffer area beyond the perimeter of 
the installation (24%) (Figure 1). Fort Bragg, like many U.S. military installations, is becoming 
an island of native species and their supporting ecosystems in a sea of land that is relatively 
inhospitable to some native wildlife, including numerous at-risk species.  

2.1.3 CONNECTIVITY CONSERVATION FOR MITIGATION OF FRAGMENTATION 
The main tool for mitigating the effects of habitat fragmentation and population isolation is to 
protect and manage or restore lands that maintain the ability of wildlife to move between existing 
blocks of habitat. A major distinction is made between structural connectivity, which considers 
only the spatial arrangement of habitat patches, and functional connectivity which incorporates 
knowledge about dispersal behavior, albeit usually determined from expert opinion. Connectivity 
facilitates population persistence in at least two ways: maintaining meta-population dynamics 
and providing safe harbor from environmental changes like development and climate change.  
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Protecting lands that connect habitat patches can especially benefit rare, threatened and 
endangered species, many of which exist in small populations confined to relatively small areas 
of habitat (Beier and Noss 1998, Tewksbury et al. 2002). At regional scales, habitat corridors can 
be used to restore or maintain habitat connectivity for species with large range requirements, 
which often are also at risk due to habitat fragmentation at larger scales (Kikoti et al. 2010).  
Often such mega-corridors, as they are often described, follow mountain ranges or river valleys.  

Identifying which lands to conserve is typically done using using expert opinion alone, or 
increasingly, using computational methods such as least-cost path analysis in a geographic 
information system framework, or models that simulate individual animals dispersing through 
digital, gridded representations of actual landscapes (Will and Tackenberg 2008). The latter are 
often referred to as “individual-based” models. Both modeling approaches require maps of the 
resistance the landscape will present to the movement of animals that are passing through it. 
However, resistance itself is usually inferred in a crude manner from published data on habitat 
preferences or expert opinion, with little consistency in approach between different projects, or 
comparison of approaches within projects (Beier et al. 2008). This raises one questions that was 
at the heart of our project: How do models based on crude estimates of habitat resistance, 
compare to models using data on specific animal movement behaviors collected in the field 
in different habitat types? 
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Figure 1: Map of the study area highlighting location of Fort Bragg. 

2.1.4 IMPORTANCE OF A MULTI-SPECIES APPROACH 
An additional issue is that conservation management decisions typically are made to protect 
habitat connectivity for a single species, whereas many actual conservation scenarios, including 
on DoD installations, involve managing for multiple at-risk species. This is partially because 
species differ in their dispersal strategies, their sensitivity to the landscape, and the landscape 
features that might facilitate or impede dispersal, and partially because conservation historically 
has been oriented around large charismatic vertebrates, including game species, or species that 
have been federally listed as endangered. However, single-species conservation has been widely 
criticized for neglecting biodiversity and failing to recognize the critical role of biodiversity in 
maintaining ecosystem function and integrity (van Dyke 2008). This raises the question: How to 
identify the best patches of land for conserving habitat connectivity in a multi-species 
context, accounting for differences in life history, habitat affinity, and spatial distribution 
of all target species? 
 
In addressing these questions, we sought ways to maximize the conservation effectiveness of 
DoD land use, procurement, and management by explicitly incorporating knowledge of animal 
movement behavior, and landscape resistance to dispersal for multiple rare taxa. Our framework 
will allow evaluation of the conservation impact of alternative land-management scenarios, in 
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order to determine strategies for managing connectivity for suites of rare species present on and 
around installations.  

While dispersal is the primary force that generates animal distributions, dispersal data are often 
difficult to collect, and reflect patterns at a scale generally much larger than the processes 
determining them (Lima and Zollner 1996). In comparison to dispersal data, movement data are 
generally much easier to collect, and occur at the same spatial scales as environmental factors 
determining individual movement. Thus, an alternative approach to quantifying habitat 
connectivity, and the approach used in our work, was to model dispersal on the basis of more 
easily obtained data on local movement behavior (Turchin 1988; Morris 1993). Using this 
approach, movement behaviors provided a quantitative and objective basis for predicting which 
land has highest connective value for conservation (Levey et al. 2005; Revilla et al. 2004). 

Our general approach was to A) collect behavioral data on animals in the field in different habitat 
types and at habitat boundaries; B) produce digital maps of habitat variables either known or 
expected to affect animal movement; C) model habitat connectivity using simplest to most 
complex available data, and using least-cost path, and simulation methods; D) compare maps of 
habitat connectivity across species and across levels of complexity.  

We tested a range of modeling approaches for several species with very different life-histories 
and distributions.  Our models spanned a continuum of complexity from extremely simple – 
where habitat connectivity is solely a function of Euclidean distance between populations or 
habitat patches – to highly complex. Our most complex models involved simulating movement 
through the landscape for thousands of virtual individuals. As virtual organisms move across a 
gridded computer model of the actual landscape, behavioral decisions at boundaries and within 
the different habitat types are drawn from probability distributions obtained from experimental 
and observational field data. 

2.1.5 MULTI-SPECIES CONSERVATION PARADIGMS 
In working towards a conservation framework that balances the conservation needs of each of 
our focal species we drew upon two major multi-species conservation paradigms. The umbrella 
species paradigm posits that conservation can be focused on a single large area-requiring species, 
and other species are protected by coincidence with the umbrella species. In the context of our 
study area the red-cockaded woodpecker (RCW) is a potential umbrella species, which allowed 
us to test the suitability of this paradigm for conservation of multi-species habitat connectivity. 
Alternatively, the core-habitat conservation or hotspots paradigm would lead to optimizing for 
all species of concern and prioritizing lands that connect habitat for the maximum number of 
species. 

2.2 STUDY AREA 
Our study area encompasses Fort Bragg Army Base in the Sandhills ecoregion of the North 
Carolina coastal plain (Figure 1).  The base itself is approximately 65,000 ha in size, comprised 
mainly of longleaf pine forest and riparian habitats and open areas. Longleaf pine forest on base 
is subject to controlled burning on a 3-yr rotation. Fire planning is designed to complement 
management for military training.  
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Our study makes use of data from pre-existing efforts primarily in terms of historical dispersal 
records for RCW on Fort Bragg, and data on butterfly and amphibian populations on Fort Bragg. 
Many endangered and at risk species are found on DoD lands, and managing for their persistence 
and recovery poses major challenges to land-use planning on and around these areas, where 
training on base and development off base intersect or interfere with wildlife habitat. This project 
has relevance for other installations in the southeastern US coastal plain with extant populations 
of red cockaded woodpeckers (RCW), installations elsewhere that harbor at risk amphibians and 
butterflies, and all installations that manage for at risk or endangered animals. 

2.3 HABITATS OF PRIMARY INTEREST 
This project focused on identifying “dispersal habitats,”  which can include both high quality 
breeding and foraging habitats, as well as poorer quality “matrix habitats” that animals must 
traverse in colonizing suitable breeding and foraging sites. For all of our study species, and 
especially for butterflies, dispersal through less suitable matrix habitat is the only way for 
individuals to move between patches of quality habitat.  

Habitats of primary emphasis for this project, and those included in our land-cover taxonomy 
(Table 1) captured the landscape differences that matter for occupancy and dispersal of our study 
animals. Our landscape taxonomy was designed to provide the needed information and to be 
complete, parsimonious, and achievable. Suitable breeding and foraging habitats differ among 
the four species we are considering. RCWs nest and forage in high quality longleaf pine 
woodlands with an open understory. St. Francis’ satyr (SFS) and related butterflies live and 
reproduce in wetland meadows that occur intermittently along streams. Both the eastern tiger 
salamander and the Carolina gopher frog breed in ephemeral ponds that are isolated from 
streams, and, in the non-breeding season, they migrate to upland longleaf-pine and other forest 
where they live in holes or under coarse woody debris. 

Our taxonomy differentiates between forest and non-forest because this is an important 
distinction for dispersal of all of our study animals. Beyond this, we needed sub-categories 
within the forest class. Upland forest, particularly mature long-leaf pine, is used by amphibians 
for hibernation in between breeding periods, and is ideal dispersal territory for them. Plantations 
are presumed to, at best, provide intermittent breeding or foraging habitat for RCW and 
hibernation for amphibians, and are also important to differentiate. Mature Hardwood is 
primarily located in riparian and swamp areas, and is suitable dispersal habitat for RCW, but not 
for breeding or forage. The same is true for Mature Plantation. Mature Non-Plantation Pine is 
sufficient to characterize RCW habitat assuming artificial cavities could be used. However, 
Mature Non-Plantation Pine with Hardwood Understory (i. e. mixed) is less suitable habitat for 
amphibians and for RCW than Mature Non-Plantation Pine, and so is also separated out as an 
additional class. Regenerating stands act as open areas for all animals and are distinguished for 
this reason. In addition to our interest in dispersal through each habitat type, we were also 
interested in the influence of boundaries (i. e. edges or transition zones where two land-cover 
types come together) on dispersal. Boundaries can affect connectivity, for example by creating 
barriers to dispersal, or by directing dispersers through the landscape (Levey, et al. 2005). Thus, 
we also studied how animals behaved at boundaries. 
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Landscape characterization involved land-cover mapping (according to the taxonomy in Table 1) 
and also included mapping of amphibian breeding ponds, and mapping canopy density within 
three different height classes.  

Table 1: Landscape classification taxonomy 

 Classification Level  Species 
1 2 3  

Forest Upland  All 
  Mature Plantation RCW, Amphibians 
  Mature Non-plantation Pine RCW, Amphibians 
  Mature Non-plantation Mix RCW, Amphibians 
  Regenerating (<10y)Pine RCW, Butterflies 
 Riparian  All 
 Herbaceous wetland  Butterflies 
Permanent Open Open Land  Amphibians 
  Asphalt Road Amphibians 
  Dirt Road Amphibians 
  Field RCW 
  Water Amphibians 
 Developed Urban All 
Streams   Amphibians 

 

2.4 FOCAL SPECIES 
Below we outline the life history characteristics of each focal species, and provide the reasoning 
for inclusion in the study. 

2.4.1 RED-COCKADED WOODPECKER 
The federally endangered red-cockaded woodpecker is endemic to mature longleaf pine (Pinus 
palustris) forest in the southeastern US coastal plain. The longleaf pine ecosystem has been 
reduced to less than 3% of its original extent, due to clearing, logging, and fire suppression (Peet 
and Allen 1993, Outcalt and Sheffield 1996, Frost 2006). High quality RCW habitat is 
characterized as containing a moderate density of mature longleaf pine trees, low density of 
small and medium sized pines, little or no hardwood midstory, and abundant diverse herbaceous 
groundcover (Conner et al. 2002, Rudolph et al. 2002, Walters et al. 2002). The RCW is a 
cooperative breeder that exhibits territorial behavior. Juvenile males often remain in their home 
territory as helpers for several years, assisting and caring for subsequent offspring (Walters et al. 
1988, Walters 1990, Haig et al. 1994). In contrast, juvenile females usually disperse to new 
territories to obtain breeder status. Dispersal distances of RCWs exhibit a right-skewed 
distribution, with most juvenile females dispersing no more than 3.3 km and a small proportion 
dispersing long distances as high as 31 km (Walters 1990, Kesler et al. 2010). Previous research 
with mark-recapture data suggested that RCWs acquire information about surrounding territories 
using extra-territorial forays before the final dispersal event (Pasinelli and Walters 2002). Using 
radio telemetry, we confirmed that juvenile female RCWs conduct prospecting behavior with 
extensive forays from their natal territory before settling on a single breeding site (Kesler et al. 
2010 ). Previous models depicting RCW dispersal behavior have failed to account for this 
prospecting behavior and for long-distance dispersal events (Letcher et al. 1998, Daniels and 
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Walters 2000, Schiegg et al. 2002, Pasinelli et al. 2004, Schiegg et al. 2005) and, thus, may 
provide unrealistic depiction of RCW dispersal behavior. Despite the extensive RCW monitoring 
and widespread fragmentation of the longleaf pine ecosystem, because dispersal behavior was 
poorly known before this project, connectivity has yet to be quantified for RCW populations. 

2.4.2 ST. FRANCIS’ SATYR 
St. Francis’ satyr (SFS; Neonympha mitchellii francisci) is a federally endangered species that 
occurs only at Fort Bragg in wetland meadows that occur along small streams. Wetland 
meadows are created by pond inundation and abandonment by beavers, which were once 
abundant, but were eliminated from North Carolina by the late 19th Century. This may explain 
the loss of habitat and the currently restricted distribution. Initially, flooding has a negative 
impact on butterfly subpopulations, as caterpillars cannot withstand submergence. Following 
beaver lodge abandonment and flood recession, however, the plant communities progress 
through succession from wetland meadow, which provides SFS habitat, to woody and shrubby 
vegetation that excludes the butterfly’s food plants. Thus, because available habitat is constantly 
shifting, the butterfly needs to disperse to new habitat in order to persist in the landscape. 
Because beavers have been restored to the landscape, there may be suitable habitat on or off Fort 
Bragg that has yet to be colonized. One of the goals of our project was to identify these suitable 
habitats, and identify lands that preserve connectivity among them. 

2.4.3 AMPHIBIANS 
Eastern tiger salamanders (Ambystoma tigrinum tigrinum) and Carolina gopher frogs (Rana 
capito capito) are both NC-state listed as threatened species. The Carolina gopher frog is also 
considered a federal species of concern. These amphibians breed in late fall (A. tigrinum) and 
winter (A. tigrinum and R. capito) in temporary pools within upland sandhills habitats (Petranka 
1998; Palis 1997; A. Braswell personal communication). Adults spend the summer (non-
breeding) months in upland longleaf pine woodlands, spending most of their time in holes 
created by rotted or burned out roots (A. Braswell, E. Hoffman, R. Sutherland personal 
communication). Both species must migrate between breeding and non-breeding habitats. 
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3 MATERIALS AND METHODS 
This report describes all of our accomplishments during the funding period of SERDP SI-1471.  
Subtasks completed this year fall into three categories.  First, we have validated the dispersal 
models for each species and applied them to the larger area surrounding Fort Bragg (Subtask 
4.6).   Second, we have developed a user-friendly tool for managers to perform multi-species 
connectivity analyses on any number of species for any conservation area (Subtask 4.7).  Finally, 
we have completed the integration of the individual species models into multi-species habitat 
prioritization maps and used these maps to that evaluate a number of conservation scenarios both 
on Fort Bragg and in a 5km buffer off-installation (Subtasks 4.5 and 4.8). 

In the following sections we present a detailed description of the methods developed to 
accomplish this project.  These include: 1) the development of the environmental datasets 
necessary for the occurrence and dispersal modeling, 2) empirically parameterized dispersal 
models for each of the focal species, and 3) the integration of the dispersal models into a multi-
species conservation priority maps that inform conservation values for the areas surrounding Fort 
Bragg and the installation itself. 

3.1 DATA CONTRIBUTING TO THE DEVELOPMENT OF DISPERSAL LANDSCAPES 
We draw upon a variety of remotely-sensed data to generate the environmental templates for our 
models, including raw products such as LiDAR and LANDSAT and classified products such as 
the National Land Cover Dataset and National Wetland Inventory (NWI).  The environmental 
maps we generated describe the landscape surrounding Fort Bragg in ways that are biologically 
meaningful to our study organisms.  This includes three-dimensional estimates of forest cover, 
discrete land-cover classifications that correspond to our release experiments, and RCW-specific 
dispersal environments.  All of our environmental datasets share a common spatial reference. 
This is important for the final steps of integrating the dispersal models of each species.  While 
some of our intermediate steps may use different spatial references, all of our final 
environmental datasets are projected to North Carolina State Plane, meters, and all rasters have a 
30m resolution. 

The environmental data were developed at two extents.  The extents are a rectangle bounding 
Fort Bragg, and a rectangle enclosing a 5km Buffer around Fort Bragg and Camp Mackall 
(Figure 2). The smaller extent was used to make inference about the movement of species on the 
installation itself, while the larger extent was used to make inference about conservation values 
of lands off-installation.  Our justification for using two extents stems from the limitations of the 
data we collected, and from the biology of the organisms themselves.  Existing populations of 
SFS and the amphibians are limited spatially and these species have limited vagility.  In our most 
conservative simulations of the species, there was little or no dispersal off-installation.  So, we 
limited our inference from these models to the installation itself.  Using alternative methods, 
such as Circuitscape or simulations with relaxed assumptions we could model dispersal off-
installation, and these models play a key role in making inference about conservation priority of 
off-installation lands, however these predictions are subject to a greater amount of uncertainty 
than the on-base analyses because of the quality of available off-installation data.   
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Figure 2. Map of the study area showing our two analysis extents, along with the National 
Landcover Dataset. Green represents forest, blue represents wetland or water, brown 
represents agriculture, and red and Pink represent urban development. The smaller extent 
encompasses Fort Bragg alone and was used when inference from our most conservative 
simulation models. At the larger extent we used dispersal models with relaxed assumptions to 
assign conservation priorities to off-installation areas. 

3.1.1 LIDAR FOREST COVER ESTIMATES 
Airborne LiDAR data are ideally suited and commonly used to infer three-dimensional forest 
canopy structure, which can provide information on habitat diversity (MacArthur and 
MacArthur, 1961), ecosystem productivity (Waring, 1983), harvestable timber (Maltamo et al., 
2004), and forest type (Maltamo et al., 2005). This is one of the most promising new applications 
of remote sensing technology for the study of forested ecosystems. However, as with many 
remote sensing applications, most models for estimating canopy attributes from LiDAR provide 
limited information on the uncertainty of estimates. This manuscript presents a method for 
inferring the vertical canopy density of forests from LiDAR data, which includes reliable 
estimates of uncertainty due to the LiDAR sampling process. 

LiDAR data consist of geolocated return times for pulses from a scanning laser. Distances and 
elevations of objects intercepted by the pulses are derived from these return times. Because grain 
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can be small (more than one return per square meter) and extent can be very large (entire states 
have been mapped), LiDAR data are spatially dense, even by remote sensing standards. A 
common application of LiDAR data is to create high-resolution digital elevation models from 
returns that reach the ground. Pulses also reflect off of vegetation and buildings, yielding 
estimates of elevation for these surfaces as well. Foresters use LiDAR to estimate forest stand 
characteristics, such as basal area and harvestable timber (Means et al., 1999), net primary 
productivity (Lefsky et al., 2005), and to identify individual tree crowns (Popescu, 2007). 
Ecologists use LiDAR data to define habitat quality for endangered species (Nelson et al., 2005), 
quantify the intensity of insect defoliation (Solberg et al., 2006), and associate bird diversity with 
forest structure (Goetz et al., 2007; Muller et al., 2009) (See Vierling et al., 2008, for a full 
review). 

Most inferential models of forest structure from LiDAR data do not explicitly treat different 
sources of error. For example, a typical approach is to regress field derived forest stand 
characters (e.g. basal area, stem density) against LiDAR-derived metrics (eg Goodwin et al., 
2006; Harding et al., 2001; Lefsky et al., 1999). In such regressions there are at least three major 
sources of error: 1) measurement error associated with field-collected data, 2) error in the 
correspondence between the field metric and the LiDAR metric, which are typically measuring 
different phenomena, and 3) sampling error associated with the LiDAR metric itself. Sampling 
error in particular is heterogenous because sample density is dependent upon the response 
variable. That is, the total number of possible returns at any height is attenuated by the forest 
canopy above. Generalized linear regression lumps all these three error sources into a single 
error term. The heterogenous sampling effects introduced by the LiDAR data collection process 
are not considered in such models. In this paper, we present an inferential model describing the 
error distribution of a canopy density metric derived from discrete return LiDAR. Here, canopy 
density is defined as the vertically projected stem and leaf area between two heights. Across 
many consecutive heights these canopy densities form a canopy height profile (Lefsky, 1997). 
We present this inferential model in a simple Bayesian framework, one that is easily extended to 
include other sources of error present in LiDAR data, such as scan angle and spatial 
autocorrelation of returns. 

3.1.1.1 DATA 
We selected a single 1km2 quadrat (35◦10’48.617”N, 79◦12’15.863”W, Figure 3) on Fort Bragg 
for intensive analysis. This quadrat contained all the major types of forest canopy density present 
on Fort Bragg. We chose this quadrat because we could easily classify the forest types based on 
aerial photos and surveys on the ground. We compared these heads-up classifications within the 
quadrat to the canopy density estimates we derived from LiDAR. 
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Figure 3: Locations selected for ground validation of LiDAR canopy density model. 

We used 2-return LiDAR data with an average spacing of 0.33m2 (1m ground return spacing). 
These data were flown on July 1-3 2006 by Airborne 1 corporation (http://www.airborne1.com/) 
at a height of 900m, with a pulse frequency of 20Hz, and scan angle of ±18 degrees. The pulse 
footprint at the ground was approximately 24cm. The dataset contains approximately 2 billion 
returns and covers all of Fort Bragg save the far NE corner. Returns were agglomerated into 
50mx50m cells with approximately 10,000 returns per cell. We applied our model to the 
distribution of returns within each of these cells. 

The Bayesian framework we have adopted requires that prior information about forest canopy 
density be included. The influence of the prior in Bayesian inference depends upon the nominal 
precision of the prior data. This precision can be informed by a known or estimated error 
distribution, and commonly different prior weights are used on the same model to assess the 
prior’s role in the posterior estimates. 

Our prior knowledge of forest canopy density was derived from data collected in 2001-2002 
following the protocol laid out in the U.S. Forest Inventory and Analysis National Program 
(Alerich et al., 2004, FIA). These forest stand data consist of a polygon shapefile with attributes 
for abundance of hard and softwoods of different diameters. We correlated these estimates of 
hardwood and softwood abundance with canopy height, depth and canopy density measured in 
10 mapped plots. From the mapped plots we developed allometric relationships between the 
diameter at breast height (dbh), mean and variance of canopy density, and mean and variance of 
canopy height for a tree. Then, we convolved the allometric probability distribution on the 
frequency distribution of tree diameters recorded in the forest stand data. The result of this 
process was an estimate of the canopy density for each height class in the model in every 
polygon of the forest stand data. These values became the prior for each 50m×50m grid cell on 
Fort Bragg. 

3.1.1.2 INFERENTIAL MODEL 
We consider the number of returns (including both first and last returns) within a 50m × 50m 
cell, n, at a single height interval, k, out of a K height intervals to be drawn from a series of 
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Bernoulli trials consisting of successes (returns in height k) and failures (returns below height k). 
We assume that vegetation structure at a given height is randomly distributed horizontally. This 
assumption is necessary, because returns are aggregated with the 50m × 50m cells though the 
geolocations of returns vary within the cell. The likelihood of a given number of returns nk is a 
binomial distribution with canopy density, θk: 

                                                             (1) 

3.1.1.3 ANALYSIS 
We derived posterior canopy density estimates for Fort Bragg at the following height intervals: 
1-2m, 2-5m, 5-10m, 10-20m, and > 20m. Within our focal tile we selected 5, 2500m2 cells 
capturing the variety of forest types in the study site (Figure 3) and calculated canopy density 
estimates at height intervals of 1m from 0-35m. We also calculated a 95% credible interval for 
each estimate. 

To assess the role of the prior in the posterior estimates, we repeated the analysis with different 
prior weightings. The variance of the beta-distribution is dependent upon the mean canopy 
density. So, we selected prior weightings based on the maximum variance achieved in the prior 
beta distribution across all canopy densities (the first partial derivative of the variance against the 
mean). These weightings yielded a maximum standard deviation of 0.1% and 1% for any canopy 
density. We recorded the difference in posterior estimates for the range of prior weightings 
against the posterior estimates. 

3.1.2 CREATING THE DISPERSAL LANDSCAPES 
Landcover maps that specified habitat-specific resistances were needed for the dispersal models 
of each focal species.  These landcover maps provide the template on which the individual-based 
simulations run.  We created them to mirror the 4 different habitat classes for the release 
experiments (See Methods-Saint Francis’ Satyr).  Maps were created at our two analysis extents: 
Fort Bragg, and a 5km beyond Fort Bragg and Camp Mackall.  Our land cover map for Fort 
Bragg was developed using the National Land Cover Dataset (NLCD), the National Wetland 
Inventory (NWI), forest stand data from Fort Bragg, color-infrared aerial photography, and 
LiDAR data.  Of these datasets only the NLCD, NWI, aerial photography, and a courser 
resolution LiDAR product extend off base.  To map land cover off base we modified our 
classification procedures to use these more limited datasets (Figure 4). 

The basic classification algorithm is: 1) map all NLCD open, developed, and water classes as 
open habitat; 2) map NLCD upland habitats as upland forest; 3) map all remaining pixels as 
riparian; 4) within the riparian class map wetland habitat from the NWI polygons. Open, upland 
forest, riparian, and wetland habitats are then spot checked for consistency with LiDAR canopy 
height estimates, color infrared aerial imagery, and digital elevation data.  
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Figure 4: The land cover map for SFS and amphibians at the extent of Fort Bragg.  Classes 
correspond to the four habitats for which we have empirical movement data.  These are open 
(yellow), riparian (cyan), upland (blue), and wetland (red). Highly developed areas are shown 
in white and are not considered in the simulations.  The boundary of Fort Bragg is shown in 
black. 

 

3.1.3  RCW-SPECIFIC DISPERSAL LANDSCAPE 
The red-cockaded woodpecker is much more widespread in the landscape around Fort Bragg and 
Camp Mackall than the other species considered.  As a consequence, we developed a single 
dispersal landscape for this species that applied to dispersal simulations both on-installation and 
off-installation.  This dispersal landscape utilized a variety of remotely-sensed data. 

3.1.3.1 CATEGORICAL LAND-COVER CLASSIFICATION 
Fort Bragg and Camp Mackall were classified into four land-cover classes (longleaf pine, non-
longleaf pine evergreen species, hardwood, and non-forested [open, developed, and water]) 
derived from stand-based Forest Inventory Analysis Data collected in 2001. The same land-cover 
classes were used off the military installations, but for these areas we used the U.S. Geological 
Survey GAP Analysis Program land-cover database (Gap, Jennings 2000).  

3.1.3.2 LANDSAT 
Two Landsat-5 Enhanced Thematic Mapper (ETM) images (Path16, Row 36) collected 12 
December 2006 and 5 May 2007 were georeferenced to < 1-pixel root mean square error 
(RMSE) and atmospherically corrected to estimates of surface reflectance. These two image 
dates were chosen to represent leaf-on and leaf-off conditions to facilitate differentiation of 
evergreen and deciduous canopies. Three variables were computed from these data to determine 
if RCW respond to environmental cues related to vegetation composition.  
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The ratio of infrared (0.75 to 0.90 μm, ETM band 4) to middle infrared (1.55 to 1.75 μm, ETM 
band 5) of the December image, known as Structural Index (SI, Kushla and Ripple 1998) was 
used to indicate the presence of mature evergreen forest. The SI has been found as a good 
predictor of stand age and a strong indicator of forest succession characteristics (e.g., 
differentiating between mature and old-growth) for conifer forests (Fiorella and Ripple 
1993).Young forest stand ages are positively correlated with the infrared reflectance (ETM band 
4) due to increased amounts of vegetation growth with forest age (Fiorella and Ripple 1993). The 
middle infrared reflectance (ETM band 5) has a strong negative relationship with stand age due 
to increased shadows produced by variable heights in developing stands (Wulder et al. 2004). 
Strong reflectance values for ETM bands 4 and 5 correspond to young forest stands with low SI 
values. Mature longleaf pine forest stands containing minimal understory hardwood vegetation 
and sparse forest canopy will have higher SI values. 

We used two additional variables derived from a transformation of the Landsat image bands into 
composite bands. The Tasseled-Cap transformation rotates the image data into composite bands, 
the first three of which are strongly associated with brightness, greenness, and wetness of the 
scene (Crist and Cicone 1984). Since RCWs avoid hardwood forest for nesting habitat (Wood et 
al. 2008), we wanted to test whether the presence of hardwood affected dispersal behavior. 
Greenness, which is the second component of the Tasseled Cap transformation, is correlated with 
the amount of photosynthetically active canopy present. The difference in greenness between the 
two dates (May minus December) was used to indicate the presence of hardwood forest. In order 
to account for the effect of spatial congruency of forest on RCW movements we used the spatial 
heterogeneity in summer greenness as the standard deviation of the greenness values within a 3 x 
3 pixel window (8,100 m2 area) surrounding each pixel. Low variation in standard deviation of 
greenness would indicate large forest patches, while high values would suggest small segments 
of forest surrounded by non-forested land-cover features (i.e., agricultural fields).  

3.1.3.3 NORTH CAROLINA FLOODPLAIN MAPPING LIDAR 
RCWs prefer forested areas containing longleaf pine trees greater than 60 years old  for foraging 
(U. S. Fish and Wildlife Service 2003). RCW may use longleaf pine trees between 30 and 60 
years old which usually range from 13 to 20 m tall, but avoid stands of this age when older 
stands are available (Platt et al. 1988, U. S. Fish and Wildlife Service 2003). RCW also tend to 
avoid forested areas with dense hardwood midstory vegetation (i.e., less than 8 m). We used 
LiDAR data to estimate percent cover at four biologically relevant height classes (1-8 m, 8-13 m, 
13-20 m, and greater than 20 m) at a 30 x 30 m resolution. In 2001, the state of North Carolina 
subcontracted engineering and surveying firms to collect LiDAR data during leaf-off canopy 
conditions from 31 December 2000 to 18 February 2001. Our study area overlapped the flight 
paths of two subcontractors with varying sample density and flight altitude. The post spacing 
averaged 2.25 m, flight altitude ranged from 914 m to 1676 m, and the elevation calibration 
ranged from 9 cm to 12 cm elevation RMSE. The raw LiDAR data containing three-dimensional 
coordinates of laser hits were converted into .las format with Fusion software (McGaughey 
2008). In Fusion, the height from the ground was calculated for the LiDAR points as the 
difference between the point’s elevation values and digital elevation models from the North 
Carolina floodplain mapping program. Maximum and median vegetation heights were also 
derived from LiDAR data. In order to represent the overall forest structure in a single variable, 
we calculated skewness of vegetation heights within 30 x 30 m pixel. Dense forest, such as 
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plantations or hardwood forests, with few canopy gaps should translate into a negatively skewed 
distribution of vegetation heights where the greatest densities of returns come from the canopy. 
A forest with an open canopy and minimal midstory vegetation, such as mature longleaf pine 
forest (Peet 2006), should represent as a positively skewed distribution of vegetation heights with 
a small but consistent density of returns depicting the canopy with the majority of the returns 
reaching the herbaceous vegetation in the understory.   

3.2 RED COCKADED WOODPECKER 
3.2.1 FIELD DATA ON RCW DISPERSAL 
The largest tracts of federally owned longleaf pine ecosystem in North Carolina are located on 
Fort Bragg and Camp Mackall (Britcher and Patten 2004). These federal properties also include 
over 70% (n = 437) of the 604 established RCW territories located in the study area. Since 1981, 
active RCW territories have been monitored by Fort Bragg Endangered Species Branch, 
researchers from North Carolina State University and Virginia Tech, and Sandhills Ecological 
Institute and university biologists. The species’ dispersal behavior has been assessed by marking 
juvenile and adult RCWs with a unique combination of bands, monitoring territories during the 
breeding season, and recording dispersal outcomes, that is, movements from one territory to 
another between breeding seasons, which includes both natal and breeding dispersal (Daniels and 
Walters 2000a, 200b).  For this study, dispersal events between 2004 and 2007 were used to 
validate dispersal behavior in relation to environmental features and estimate the population’s 
current connectivity.  Detailed banding and monitoring methods are described in Walters et al. 
(1988). 

To parameterize models that predict how environmental cues influence prospecting behavior and 
connectivity of RCWs, we collected movement data on prospecting birds using radio telemetry. 
Many juvenile females remain on their natal territory with their family group through the winter 
and disperse just prior to the next breeding season.  We focused on these individuals to increase 
efficiency in obtaining data on dispersal behavior.  In spring (March – May) 2006, 18 juvenile 
female RCWs that had not yet dispersed from their natal territory were captured in their roosting 
cavities and fitted with a 1.4 g transmitter glued to the base of 2 tail feathers (BD-2, Holohil 
Systems Ltd., Ontario, Canada). These birds were tracked for the life of their radio transmitters 
(~ 9 wks) on the western portion of Fort Bragg, which contains the largest unfragemented tracts 
of longleaf pine forest on the property. In order to evaluate how RCW movements are affected 
by human-modified landscape features, we radio tagged and tracked an additional 16 individuals 
during 2007 in the eastern section of Fort Bragg, which consists of highly fragmented forest 
surrounded by urban and agriculture land use (Figure 5).  Four of the subjects in 2007 had 
already dispersed from their natal territories and were floaters, that is, individuals not belonging 
to any territorial family group.  

Animals were located via homing by using signal strength and direction with a receiver (R-1000, 
Communication Specialist, Inc. Orange, CA, USA) and a 3-element Yagi directional antenna (Wildlife 
Materials, Inc., Carbondale, IL).  When an individual was located outside its home territory we 
recorded a Universal Transverse Mercator (UTM) coordinate using a hand-held Garmin® global 
positioning system unit (GPS; Olathe, KS, USA). We attempted to relocate radio-marked 
woodpeckers daily. Study subjects were ordered in a list by geographic location, and then a 
single individual was randomly selected to be the first daily observation. During 2006, we 
attempted to locate all radio-tagged birds at least once a day, although positions of foraying birds 
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occasionally could not be determined due to military training or zoning, topographic 
interference,  or vegetation. Radio tracking protocols varied slightly in 2007 to account for 
increased tracking personnel (2 and 3 individuals conducted radio tracking in 2006 and 2007, 
respectively) in order to increase probability of detecting forays.  In 2007 the radio-tagged 
population was divided into 3 sampling sections. Each section consisted of approximately 5 
radio-tagged individuals within close proximity to each other.  All sections were sample in 4 
hour sessions throughout the day with the first individual randomly selected for each session.  
Each person looped through the radio tagged individual in a section and record if they are in or 
out of their natal territory.  If radio-tagged birds were not initially found with the natal group, we 
drove throughout the study area using vehicle-mounted omnidirectional antennas until the 
foraying individuals were located. Once located, we remained with the individual to collect GPS 
locations, social observations, and landcover characteristics.  Monitoring continued for the other 
radio tagged individuals as long as we were able to return to individuals off their natal territory at 
30-minute intervals. 

Birds were considered to be on forays when they were twice as close to a cavity tree on a non-
natal territory as they were to a cavity tree on their natal territory and were not with other 
members of their natal group. Radiotelemetry observations ceased when transmitters failed or 
with the onset of the breeding season and egg laying. Based on the telemetry data, we calculated the 
number of days a bird visited a non-natal territory (Frequency of Territory Visits). Foray distances were 
approximated using the linear distance between the roosting site on the natal territory and the visited 
territory. We defined each individual’s prospecting range as the maximum foray distance traveled from 
the roosting site. 
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Figure 5: The study area extent with the centers of Red-cockaded woodpecker (Picoides 
borealis) territories and military installation boundaries. The two shaded polygons illustrate 
the spatial coverage of radio telemetry data collection (2006 = west, 2007 = east). 

3.2.2 MOVEMENT MODELING 

3.2.2.1 GENERATING RESISTANCE SURFACES USING MAXENT 
The Maxent software package (Phillips et al. 2006) is a species distribution modeling (SDM) 
approach that has recently gained popularity, especially with rare species for which there are few 
spatial records. Maxent contrasts the environment underlying input presence points against a 
random sample of background points, which represent the availability and range of 
environmental conditions of the study area, to predict the maximum likelihood distribution of a 
species. This distribution is applied to the entirety of the study area and can be displayed as a 
raster grid. Each grid cell of the resulting map is ranked in a continuous index from 0-100 
indicating relative landscape suitability.  

Maxent is particularly useful as it relies only on presence data, so avoiding the possibility of 
indeterminacy of habitat versus non-habitat and poor resolution of habitat models due to the lack 
of detailed presence/absence information (Sexton et al. 2006). It frequently outperforms other 
SDM techniques, notably with limited datasets (Elith et al. 2006; Wisz et al. 2008; Hernandez et 
al. 2006; Phillips et al. 2006; Pearson et al. 2004). Furthermore, Maxent is not limited to 
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modeling linear relationships, which are rare in nature. Instead, because variables are considered 
individually, disparate relationships are possible for each variable, giving a more complete and 
holistic representation of the study area than a restrictive linear model (Phillips et al. 2006).  

The Maxent software requires two types of input data, grids with environmental variables and 
the coordinates of species occurrences. Two separate sets of Maxent models were created to 
differentiate the environmental cues associated with breeding sites versus prospecting 
movements. To characterize environmental features at breeding sites we used territory centers as 
occurrence data (n = 604). Environmental variables recognized during prospecting movements 
were identified by creating habitat suitability models with all non-natal telemetry locations (n = 
1710). For each type of occurrence data, we created five different sets of environmental data, 
with increasing complexity, to determine which set of remote sensing data best explains RCW 
prospecting movements. The simplest representation of the environment was with a raster 
containing four general land-cover classes (longleaf pine, non-longleaf pine evergreen species, 
hardwood, and non-forested). To determine if vegetation composition influenced prospecting 
movements we created a habitat suitability map using the three Landsat-derived variables. Three-
dimensional forest structure was represented with seven variables derived from the LiDAR data. 
We then combined the Landsat and LiDAR data to produce a habitat suitability model. The final 
and most complex habitat suitability model included the four discrete land-cover classes and all 
ten remotely sensed environmental variables.  

Due to our relatively large samples of occurrence data (> 80 occurrence points), we allowed 
Maxent to fit all feature functions (linear, quadratic, product, threshold and discrete) by selecting 
the “auto feature” option. In addition, the regularization constants (β) were not adjusted in 
Maxent. Each set of occurrence data was randomly divided into training (75%) and testing (25%) 
points. To account for variation in training and testing data sets, for each of the Maxent models 
we used bootstrapping with 10 replicate samples with replacement for both types of occurrence 
data. In addition, we used jackknifing to estimate the relative contribution of the predictor 
variables in each model. The model’s performance was evaluated with Area Under the Curve 
(AUC) of a Receiver Operating Characteristic (ROC) plot. The AUC in Maxent evaluates the 
performance of the model based on true-positive accuracy assessment, which is the ratio of cells 
correctly classified to the total number of cells with the classification. The AUC values range 
from 0 (habitat predictions worse than random) to 1 (perfect prediction of habitat), with 0.5 
indicating random classification. Maxent then produces a logistic probability of habitat 
suitability for the entire study area (Phillips and Dudik 2008). Values near one indicate the most 
suitable habitat conditions while unsuitable habitat is indicated by values close to zero. 
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Figure 6: Overview of methods used to create resistance surface for effective distance and 
graph network edges when estimating connectivity of Red-cockaded woodpecker (Picoides 
borealis) habitat. 

 

The habitat suitability map created with Maxent software was converted into a resistance layer 
(Figure 6). Effective distance is defined as the minimum cumulative cost from a source to a 
given site in the landscape (Adriaensen et al. 2003). In this study, the source locations are the 
radio-tagged RCW roosting territories. Destination points are defined as all territories within 
prospecting range. The friction values on the resistance surface are usually converted from the 
species habitat suitability preferences with a single function, such as linear (Ferreras 2001, 
Singleton et al. 2004, Richard and Armstrong 2010). However, there is no overwhelming reason 
to assume that habitat preferences are linearly associated with friction values. We tested the 
sensitivity of the relationship between habitat suitability and friction values for the prospecting 
RCW. A resistance surface was derived for each Maxent model by converting the habitat 
suitability values (h) into friction values (f) with the function: 
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A rescaling constant, c, was included in the above function to vary the relationship between 
habitat suitability (h) and friction values (f). An arbitrary scale of friction values from 1 to 100 
was chosen, where the lowest value (1) is assigned to the highest suitable habitat (Maxent 



22 

 

suitable habitat = 1) and the highest value (100) is assigned to the most avoided habitat (Maxent 
suitable habitat = 0). We then selected seven rescaling values (c), ranging from 0.25 to 16 
(Figure 7), to produce a broad range of curves to evaluate which relationship between habitat 
suitability and friction values best predicts RCW reaction to environmental cues. Based on the 
ten habitat suitability models and seven rescaling constants (Figure 7), a cost distance model was 
applied to each of the 70 resistance layers resulting from the combination of the ten habitat 
suitability models and seven rescaling constants in ArcInfo Workstation (Environmental Systems 
Research Institute Inc. 2008). For each resistance surface, we calculated the effective distance of 
the least-cost path from each of the radio-tagged RCW roosting territories to all possible 
territories within each individual’s prospecting range. 
 

 

Figure 7: The seven curves used to rescale habitat suitability values into friction values. The 
dash and dotted curves produced the top-ranked and second-ranked predictive rescaling for 
prospecting behavior, respectively. 

3.2.2.2 GRAPH NETWORKS 
We also estimated connectivity for RCW populations using a graph-theoretic approach. The 
influence of effects of landscape features between territories was accounted for with the 
empirically estimated resistance surface that optimally represents RCW prospecting movements. 
For this study, the nodes in the graph networks were denoted as territory centers.  A distance 
matrix, F, was populated with functional distances (fij) between all pairwise combinations of 
territories.  For comparison, a geographic distance matrix, G, was created to portray a graph 
network in a featureless matrix. The functional (F) and Geographic (G) distance matrices were 
converted into unidirectional graph models with igraph package in R statistical software (R 
Development Core Team 2010).  For each graph (Functional and Geographic), we examined the 
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overall trend in connectivity with decreasing dispersal ability.  Edges were iteratively removed at 
100 and 1000 m intervals for the Geographic and Functional distances, respectively.  When the 
distance matrix values were greater than the threshold distance, the territories were defined as 
connected.  At each interval we estimated three connectivity metrics, 1) number of components, 
2) size of the largest component, and 3) diameter of largest component (Table 2). 

 

Table 2: Definition of graph terms and metrics used to evaluate connectivity of red-cockaded 
woodpeckers (Picoides borealis) in North Carolina’s Sandhills ecoregion.   

Graph Terms Definition 

 
Node Points (i.e., habitat patches or territory centers) 

 
Edge Flux between pair of nodes 

 
Path Sequence of connected nodes 

 
Component Connected subgraph with nodes separated from rest of the graph 

 

Shortest Path Shortest distance (number of edges or sum of weighted edge) through a 
component 

Metrics 
  

 
Number  Number of subgraphs 

 
Order Number of nodes (territories) in the largest component 

 
Diameter Longest minimum path length between any pair of nodes in a component 

 

To evaluate the current connectivity of RCW populations, the trend in connectivity metrics from 
the geographic and functional distance networks were then compared with cumulative 
probability of observed dispersal events between 2004 and 2007 (n = 257).  We selected this 
subset of dispersal data to have similar environment and landscape composition as radio-tagged 
individuals.  The observed functional distances from natal territory to breeding territory (x) were 
fitted to a lognormal probability density function,  
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where μ and σ are the mean and standard deviation of the distances’ natural logarithm, 
respectively.  The lognormal distribution was selected because if the minimum range of the 
distribution is defined as zero, the two parameters provide flexible distribution of short and long-
distance movements.  The cumulative distribution functions (cdf) were extracted from the 
functional lognormal probability density functions.  We then evaluated how the cumulative 
probability of dispersal based on observed movements corresponded to the sharp transitions in 
the connectivity metrics. 

To determine which network optimally represented RCW connectivity, we used the observed 
dispersal events to evaluate if individuals are influenced by landscape features between 
territories.  This was accomplished by comparing the effective distance for each observed 
dispersal event to the average effective distance of available territories with similar geographic 
distance.  Available territories were defined as territories with similar geographic distances (with 
the 25th percentile) from the natal territory to the observed destination territory and are within the 
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maximum distance any juvenile female was observed dispersing from the natal territory during 
all the years of banding data. 

3.3 SAINT FRANCIS’ SATYR 
3.3.1 FIELD DATA - EXPERIMENTAL RELEASES OF APPALACHIAN BROWN 
We have already published the results of experimental releases to measure butterfly movement 
behaviors (Keufler et al. 2010), but we include an overview of the key methods and results in 
this Final Report.    

We performed two types of experiments using Appalachian brown butterflies (ABB), Satyrodes 
appalachia (Chermock) as a surrogate species for SFS. First, we quantified the choices 
butterflies made when released at boundaries between habitat types. Second, we quantified 
movement parameters for individuals released within large areas of each habitat type. As our 
experiments involved moving individuals away from their native wetlands to measure their 
movement behaviors in other habitats, and we could not be certain that we would be able to 
recapture all released butterflies to return them to the wetlands, we judged it would be unethical 
to perform these experiments on the endangered SFS directly.  However, when we observed 
naturally moving (non-released) individuals in wetlands, we found that ABB has movement 
behaviors very similar to those of SFS, supporting the use of ABB as a behavioral surrogate 
species for SFS (Keufler et al., unpublished).  

We identified five common habitat types for our experiments: upland forest, riparian forest, open 
field, wetland meadow (high-quality habitat for our species), and urban development. Within our 
study landscape, upland-forest and open-field habitats each cover ~40–45% of the land surface; 
wetlands and riparian tracts each account for < 5% of the land surface.    

We examined habitat choices made by ABBs that we released at distinct boundaries between 
pairs of habitats. We performed releases because encounters with most boundaries would occur 
too rarely for us to study. We established release sites at all realistic habitat boundaries across 
Fort Bragg for a total of six boundary types at 16 different locations. There were release sites at 
three different locations for each of five different boundary types: wetland to riparian forest, 
wetland to upland forest, riparian forest to upland forest, upland forest to open field, and upland 
forest to urban development. Additionally, we established one site at a rare boundary type, 
riparian forest to open field. At each site, we released ABBs that were collected and transported 
from an area where they occurred in abundance (as in Conradt et al. 2000 and Kuefler and 
Haddad 2006). Upon their release we visually tracked each butterfly until it was lost in one of the 
two habitats. We recorded the habitat it first flew into, the habitat it spent the most time in before 
it was lost by the observer, and the habitat in which it was lost. We defined the ‘‘preferred 
habitat’’ to be the one that the   butterfly chose by two or more of the above three criteria. For 
each pair-wise choice we then calculated the frequency of selecting either habitat based on these 
preferences. Finally, for each habitat, we calculated an overall probability of entry as the average 
selection frequency across all the pair-wise choices where that habitat was an option. Each 
butterfly used was uniquely marked on the wing with an ultra-fine-tip marker to ensure that we 
did not use the same individual twice. Butterflies were observed until they were lost in a habitat 
or until no movement had occurred for 30 minutes. We collected data from 59 individual 
butterflies released at boundaries, with at least 8 individuals for every boundary type with the 



25 

 

exception of only 3 individuals at the riparian forest–open field interface. For more common 
boundary types, such as an upland forest–open field interface, we were able to collect choice 
data from an additional 9 butterflies that were released for movement-path experiments 
(described in the section below). For each boundary type, we tested the hypothesis that there was 
no preference for either habitat using a binomial test. Additionally, for each habitat type we 
analyzed butterfly choices using the Freeman-Halton extension of Fisher’s exact probability test 
(effectively a G test for low sample sizes) to test whether the probability of choosing a certain 
habitat depended on the adjacent habitat.  

To quantify habitat-specific movement, we conducted releases within continuous areas of single 
habitat types. We established release sites at three different locations for each of four habitat 
types: wetland, riparian forest, upland pine forest, and open field. We then released naive 
butterflies at each site and collected data on spatial aspects of movement. Butterflies were 
uniquely marked, individually released, and, whenever possible, re-caught after the trial and 
returned to their original place of capture.  

We collected spatial data on butterfly movement using two different techniques, depending on 
the type of habitat. In upland pine forests and open fields, we were able to walk or run behind 
butterflies while maintaining a suitable distance so as to not influence their movements in any 
obvious way. One observer called out at 5-s intervals, and at each call the second observer 
dropped a numbered marker at the butterfly’s location. This process was repeated until the 
butterfly perched for 30 min or was lost from sight. We then measured the bearing and distance 
between sequential markers (which we defined as a ‘‘move’’) and used them to calculate a 
sequence of move lengths and turn angles (i.e., the angle between successive bearings) for each 
movement path. If a butterfly did not move during an interval, we designated that interval as a 
‘‘rest period.’’ For these movement-path analyses we used data from releases at boundaries if 
butterflies clearly flew in a specific habitat for two or more moves. If butterflies moved through 
both habitats, then flight paths of the same butterfly in each respective habitat were treated as 
independent paths. In bottomland forests and wetlands, where walking was difficult and the 
habitat was sensitive to trampling, we could not physically follow butterflies. In these habitats, 
we used pairs of digital compasses and triangulation techniques, rather than numbered markers, 
to determine move lengths and turn angles for each movement path (see also Zalucki et al. 
[1980]). We worked in pairs, with each observer standing at a fixed location. Each observer 
operated a KVH DataScope (digital compass; KVH Industries, Middletown, Rhode Island, USA) 
affixed to a swivel on a PVC pole. The poles were pushed into the ground to maintain their 
position relative to each other. Upon release the observers worked cooperatively to take 
synchronous bearings of the butterfly’s position at 5-s intervals, until the butterfly either perched 
for 30 min or was lost from sight. We also used this observational approach to track the 
movements of undisturbed ABB in their native wetland habitats and used these data on 
nonreleased butterflies to gauge the effect of release on ABB’s behavior. To collect data for 
undisturbed butterflies, paired observers stood at fixed locations within areas where butterflies 
were abundant, began taking data as soon as an individual was sighted, and continued until the 
butterfly was lost from sight or perched >30 min. 

We used Kolmogorov-Smirnoff (K-S) tests to determine whether the distributions of move 
lengths and turn angles differed between all pair-wise combinations of habitats. To compare 
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movement rates among habitats, we computed a single index of motility that integrates the two 
components of movement, move lengths and turn angles, based on the correlated random-walk 
model of Kareiva and Shigesada (1983). This motility index represents the asymptotic amount by 
which the mean squared displacement of a butterfly from its starting point increases with each 
move. For details, see Keufler et al. (2010). 

3.3.2 HABITAT MODELING WITH MAXENT 
Landscape connectivity was analyzed with respect to maps of known or high potential habitats 
for SFS breeding.  Habitat maps were created as follows.  Using variables derived from terrain, 
land cover, and vegetation structure data, we created two maps characterizing the study area’s 
suitability for SFS at two different extents: (1) a habitat suitability map covering only Fort 
Bragg, and (2) a buffered habitat suitability map that covers Fort Bragg as well as a 10km buffer 
around Fort Bragg’s outer boundary. Because of the temporary (i.e. successional) nature of SFS 
habitat, we based these habitat suitability models on those locations where we saw SFS during, 
and within one year of 2008 (the year for which we obtained Landsat data, see below). Butterfly 
locations were obtained as Universal Transverse Mercator (UTM) coordinates using a Trimble 
hand-held Global Positioning System (GPS) unit, resulting in a total of 217 points representing 
SFS presence locations.  

A wide range of terrain-derived variables has been found important in vegetation modeling 
(Franklin 1995) and by extension, in modeling the distribution of fauna dependent on vegetation, 
such as butterflies. Terrain variables derived for this study included moisture (flow accumulation 
and slope), solar radiation (aspect), temperature (elevation), and topography (relative slope 
position, topographic position index, terrain shape). (For more information on each index used 
see e.g. Tarboton 2009). All terrain-based variables were derived from a Digital Elevation Model 
(DEM) at the 10m resolution, acquired from the USGS national elevation dataset using tools 
contained in the ArcGIS Spatial Analyst and TauDEM v. 4.0 packages (Tarboton 2009). 

To obtain land cover data of the study area, we georectified one cloud and snow-free winter 
(January 2008) and one cloud-free summer (May 2008) LANDSAT-5 Thematic Mapper (TM) 
image of the study area to the NC State Plane projection.  We then converted the six non-thermal 
TM bands (bands 1-5, 7) to radiance (Chander et al. 2007) and estimates of surface reflectance 
using the DOS3 approach (Song et al. 2001). Surface reflectance values were transformed to 
Tasseled-Cap “brightness”, “greenness” and “wetness” indices (Kauth & Thomas 1976, Crist & 
Cicone 1984) using coefficients calibrated for Landsat TM-5 surface reflectances (Crist 1985). 
For each surface index, we considered the value of each pixel as well as the difference in values 
between the two images.  

To characterize the study area’s vegetation structure, we obtained two datasets. First, for the 
buffered Fort Bragg habitat suitability map, we obtained, at a 10m resolution, two spatially 
explicit datasets representing canopy height and surface height respectively. These two files were 
derived using LiDAR data obtained by the North Carolina Floodplain Mapping Program 
(NCFMP; http://www.ncfloodmaps.com) and processed by the USF&W office in Raleigh, NC. 
For the habitat suitability map covering only Fort Bragg, we used the LiDAR data obtained 
through this project (see LiDAR Forest Cover Estimates).  We derived mean vertical density of 
vegetation at heights 1-2m, 2-5m, 5-10m, 10-20m and higher than 20m, also at the 10m 

http://www.ncfloodmaps.com/�
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resolution. Vegetation density was chosen as it best characterizes the relative vertical structure of 
a habitat, an important aspect of habitat suitability for this butterfly (Kuefler, et al. 2008).  
We created habitat suitability maps for both extents (Fort Bragg and buffered Fort Bragg map) 
using the Maxent software package (for a more complete description see Section 3.2.2.1).  For 
both Maxent models, we retained the default regularization multiplier (1), convergence threshold 
(10-5), maximum number of iterations (500), and maximum background points (10,000). 
Furthermore, we conducted ten bootstraps of each model (with training data for each bootstrap 
sampled with replacement), and replicate species distribution models were averaged to create a 
final output. Because our environmental data were derived from different sources, not all data 
conformed to the same spatial extent. Maxent will adapt the coarsest spatial grain during 
modeling, causing us to lose the fine-scale detail present in the LiDAR and DEM-derived 
products. As such, we resampled all Landsat data to the 10m scale using nearest neighbor scaling 
to retain the file-scale information provided in the terrain and LiDAR-derived data. This did not 
improve the spatial resolution of the Landsat images but aligned the pixels of the various data 
sources for the analyses.  

We used a cumulative threshold value that balances errors of commission (sensitivity) and errors 
of omission (specificity) to distinguish suitable from unsuitable habitat. Specifically, we used a 
method of thresholding the point on the ROC curve where the sum of the sensitivity and 
specificity is maximized (for more information see Phillips et al. 2006). Once suitable habitat 
patches were identified, we filtered unlikely locations first by eliminating those habitat patches 
smaller than the smallest known habitat patch that supports SFS (100m2) and thereafter locations 
present within human habitation.   

3.4 AMPHIBIANS 
3.4.1 FIELD EXPERIMENTS 
We conducted field experiments with amphibians to provide empirical data that could be used to 
create movement models that would be comparable to movement models developed for RCWs  
and St. Francis’ satyrs.   

In addition to providing data for modeling, these experiments examined how movement behavior 
is affected by several different factors that are subject to modification by people and are 
associated with the ecology of amphibians, ranging from conditions within breeding ponds, to 
coarse transitions between habitats at their boundaries, to changes within habitats in ground 
cover.  This research tests three assumptions that are often made implicitly in studies of 
movement behavior and connectivity, including: 1) individuals within a population exhibit 
similar behavior, 2) species respond more strongly to canopy structure than variation in ground 
cover, and 3) the movement behavior of common species is an appropriate surrogates for rarer 
species.  These empirical results are used in simulation studies with amphibians that are reported 
elsewhere (see Movement Simulations for SFS and Amphibians).  Here we report our findings 
from field experiments with amphibians and provide recommendations for connectivity research. 

We conducted a series of experiments to examine factors associated with the movement ecology 
of amphibians as they leave breeding ponds (Figure 8).  First, we manipulated larval density of 
ornate chorus frogs to determine how variation in larval conditions affects movement behavior in 
good and bad dispersal habitat.  Although the dispersal of juvenile amphibians has been studied 
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by others, important questions remain unresolved.  Chelgren et al. (2006) observed juvenile red-
legged frogs (Rana aurora aurora) leaving natal ponds and found that smaller body size and 
delayed timing of metamorphosis resulted in slower dispersal rates.  Patrick et al. (2008) 
examined patterns of habitat selection and mortality for juvenile wood frogs (Rana sylvatica) and 
found that habitat selection was affected by coarse-scale rather than fine-scale variation in 
habitats, which resulted in high densities of juveniles in suitable habitats that were associated 
with higher density-dependent mortality.  However, experiments examining the effects of larval 
conditions on juvenile movement behavior in habitats that vary in suitability are lacking.  Here 
we manipulate larval density of ornate chorus frog tadpoles to test for the effects of variation in 
body condition on movement behavior in high and low quality habitats where low quality habitat 
reflects common management practices.  We initially compared movement behavior of frogs 
reared at different densities in forest and field habitats.  We then compared the movement 
behavior of frogs from different densities in forested habitat where leaf litter is raked or left in 
place.  We predict that frogs raised at low densities will be larger and move more rapidly than 
frogs reared at high densities regardless of the habitat in which they are released following the 
pattern observed by Chelgren et al. (2006). 

 

Figure 8: Amphibian field experiments collected movement data on species as they moved: 
(1) from ponds to upland areas, (2) from forest to field habitats, and (3) from raked to 
unraked forest plots. 

We then examined how manipulating microhabitats affects movement behavior of eastern newts 
(Notophthalmus viridescens) and ornate chorus frogs (Pseudacris ornata).  Habitat manipulation 
is an important process that affects species in fragmented landscapes.  Although habitat 
fragmentation is caused by loss of habitat patches, remaining habitat may vary in quality as a 
result of different management practices or disturbance regimes that are found in an area.  
Amphibians could be sensitive to the manipulation of microhabitats because individuals require 
different habitats for different life stages and often exhibit site philopatry (Blaustein 1994, 
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deMaynadier and Hunter 1995, Rothermel and Semlitsch 2002).  We manipulated microhabitats 
by raking pine straw because this has been linked to changes in amphibian behavior (Moseley et 
al. 2004) and it is a widespread forestry practice in the southeastern U.S.  Because amphibians 
are expected to move faster through lower quality habitats (Rosenberg et al. 1997), we expected 
that both of our study species would move faster through areas in which pine straw had been 
harvested. We also hypothesized that, in their escape from unfavorable habitats, amphibians 
would move in more direct paths in order to minimize their time spent in those habitats 
(Rosenberg et al 1998).  Through this experiment, we were able to assess the direct influence of 
microhabitat structure heterogeneity on amphibian movement rates and behavior, a topic of 
which little is understood (but see Roznik & Johnson 2009). 

Finally, we evaluated how interspecific variation affects movement behavior by comparing the 
behavior of juvenile southern leopard frogs (Rana sphenocephala) and juvenile gopher frogs 
(Rana capito).  Frogs and salamanders might be expected to show differences in movement 
behavior because the body shape of salamanders makes them more sensitive to desiccation 
(Todd et al. 2009).  By comparing the movement behavior of these congeneric frog species with 
a management relevant context – that is, at the boundary of forest and cleared habitat – we 
provide important ecological insights by testing the generality of movement behaviors among 
different species.  Boundary behavior data is used to determine the permeability of different 
habitats, and this strongly influences dispersal behavior.  Further, we provide critical information 
for conservation of amphibians since southern leopard frogs are a widespread and common 
species throughout much of their range while gopher frog populations have experienced severe 
declines in recent years. 

In conducting our experiments, we test 3 key assumptions that are frequently implied in studies 
of landscape connectivity: (1) species respond to environmental factors in a similar fashion, (2) 
species respond more strongly to the structure of coarse habitat types rather than fine-scale 
variation in microhabitats, and (3) individual variation within a population does not affect 
movement behavior.  These assumptions are seldom tested empirically in studies of landscape 
connectivity, so our findings provide important lessons for understanding the movement ecology 
of amphibians and how different ecological factors affect landscape connectivity for species in 
fragmented landscapes.  In the process of gathering data to test our hypotheses, we obtained 
detailed movement data needed for simulation models in complex landscapes. 

3.4.2 EMPIRICAL DATA FOR SIMULATION STUDY 
Because of concerns about losing animals in unsuitable habitats, we conducted amphibian 
releases necessary to parameterize dispersal simulation using a surrogate species, the ornate 
chorus frog.  The ornate chorus frog has a distribution on and around Fort Bragg similar to 
Carolina gopher frogs, suggesting that their dispersal may be constrained by similar factors, but 
is found with greater predictability and in greater numbers at breeding sites making them a more 
amenable to study. 

We quantified movement behaviors of adult ornate chorus frogs captured exiting breeding pools 
in three of the four habitats described for SFS experiments, upland forest, riparian forest and 
open fields.  Animals captured exiting breeding pools were taken to locations at least 1 km away 
to a release location.  Each animal was dipped in fluorescent dye powder before release, and its 
location was marked in 5-minute intervals for up to 30 minutes or until the animal was lost.  We 



30 

 

measured step length as the distance between consecutive locations and turn angles as the change 
in direction between consecutive steps.  We released 10, 6, and 4 chorus frogs into upland forest, 
open field and riparian corridor habitats, respectively.  

We also released 29 ornate chorus frogs and 3 Carolina gopher frogs at upland forest-open field 
edges to determine boundary behaviors and assess how dispersion rates differ between the two 
species.  The release protocol was as above except that the only a single timed location was 
recorded from the end of each release, corresponding to movement over the course of 12-60 
minutes.  

3.4.3 EXPERIMENT 1 
We collected 24 ornate chorus frog egg masses from one wetland on 2 February 2010.  Egg 
masses were held in a lab for 7 days until larvae hatched.  After larvae became free swimming 
they were randomly assigned to cattle tanks.  Twenty cattle tanks were fitted with screened 
standpipes and allowed to fill naturally with rainwater over a 3-month period prior to the 
introduction of tadpoles.  Three days prior to the introduction of tadpoles, cattle tanks were filled 
with 100 L of dry longleaf pine needles raked at Fort Bragg.  We collected plankton from the 
pond where egg masses were collected with a net and added 500 mL of pond water containing 
concentrated plankton to each tank.  Each tank was randomly assigned a high or low density of 
tadpoles (40 or 20, respectively). 

We monitored tanks 3 – 5 times per week over 12 weeks, and we allowed tanks to dry down 
naturally in late April as tadpoles began to mature.  Water levels declined 8 – 10 cm over this 
time period, and all tanks were lowered to a depth of 20 cm when tadpoles initiated 
metamorphosis.  We collected individual frogs from cattle tanks as they completed 
metamorphosis, weighed them to the nearest 0.01 g, held them in controlled conditions in a 
laboratory, and fed them wingless fruit flies ad libitum until they were used in field experiments. 

To test the effects of larval density and habitat structure on movement behavior of juvenile frogs, 
we conducted two sets of experiments.  First, we released frogs from high and low density tanks 
into open fields and longleaf pine forest to examine the effects of larval density and habitat type 
on movement behavior.  We established 2 release plots at each of 4 sites.  We randomly assigned 
one frog from a high-density tank and one frog from a low density tank to each plot during each 
night of releases.  We continued releasing frogs to track their movements until 4 – 6 frogs had 
been tracked on all plots.  We conducted releases at night between 2100 and 0300.  Frogs were 
released one at a time.  We marked each animal with fluorescent dye powder, randomly selected 
a cardinal direction for the animal to face, and placed it in the center of the plot and checked the 
location of the frog at 3-minute intervals for a total period of 12 minutes.  Frog locations were 
initially checked at longer intervals, but this resulted in the loss of individuals because of the 
small amount of dye powder on the frogs.  In a second experiment, we selected 3 additional 20 x 
20-m forest plots where pine straw had been previously raked (see details below in experiment 2) 
to evaluate the effects of larval density and microhabitat on movement behavior. 

After tracking each animal, we mapped the trail segments with compass and measuring tape. We 
measured the straight-line distance between each location marked at three-minute intervals to the 
nearest centimeter and summed these to obtain a measure of cumulative total distance. We also 
measured the direction between these locations with a compass, and recorded the straight-line 
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distance and direction from the release point to the last observed location of the animal (net total 
distance and net direction) with the same precision. 

We examined the effects of larval density and habitat type on movement behavior with a two-
way ANOVA.  We used two measures of movement behavior as response variables: the average 
speed (m/min) and the linearity of movement paths, which was determined by dividing the net 
distance of a path by the total distance moved along each segment of a path.  We tested 
movement rates and path linearity for normality with a Kilmogorov-Smirnov test, and we log-
transformed data when necessary. 

3.4.4 EXPERIMENT 2 
Our experiment to test for effects of microhabitat variation on movement behavior consisted of 
two treatments: closed-canopy forest plots dominated by pine straw (henceforth referred to as 
control plots) and closed-canopy forest plots dominated by pine straw in which a 20 by 20 meter 
(m) area had been raked free of pine straw (henceforth referred to as raked plots). For eastern 
newts, the experiment consisted of four replicates per treatment, and for ornate chorus frogs, the 
experiment consisted of three replicates per treatment.  The replicates were established in 
separate locations due to transit logistics. 

Between October 22 and December 2, 2009, we captured 35 adult male eastern newts from a 
pond using minnow traps or dip nets on nights when weather conditions were favorable to 
amphibian movement. Newts were then transported to experimental sites within five to six miles 
of the capture location. Between January 21 and March 28, 2010 we captured 16 adult ornate 
chorus frogs from breeding ponds surrounded by drift fences using pitfall traps. Individuals were 
then transferred to experimental sites within one mile of the capture locations. 

As in experiment 1, we tracked animals using fluorescent dye powder.  We left the immediate 
area (at least 30 m away) for five minutes to allow the individual sufficient time to move away 
from the release point.  We then returned and followed the trail with an ultraviolet flashlight, and 
marked the location of the individual. This process was repeated until an individual had moved 
for a total of 45 minutes, failed to move from one location after at least 15 minutes, or was lost in 
the habitat. (In the case of four newts and two frogs, we ceased data collection less than 45 
minutes after release due to a fourth reason: insufficient time available to continue tracking.) 

For each species, we compared the average speed and linearity of movement paths in control 
plots with raked plots.  We also compared net total distance traveled.  We tested data for 
normality and transformed it when necessary prior to comparing movement behavior in different 
treatments with an ANOVA. 

3.4.5 EXPERIMENT 3 
To test the value of surrogate species and the role of habitat boundaries in affecting movement 
behaviors, we used newly metamorphosed Carolina gopher frogs (Rana capito) and southern 
leopard frogs (Rana sphenocephala), both of which occur on Fort Bragg.  Carolina gopher frogs 
are a federal species of concern while southern leopard frogs remain common throughout much 
of the United States.  We removed approximately 50 eggs from each of 8 egg masses of both 
species from ponds on Fort Bragg in January, 2008.  Partial egg masses were held in the 
laboratory for approximately 2 weeks until they hatched and larvae were free swimming.  After 
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hatching, larvae were transferred to polyethylene cattle watering tanks and remained in tanks 
until they completed metamorphosis.  Cattle watering tanks contained ~900 l of water and 1.5 kg 
of leaves (a mix of sweetgum (Liquidambar styraciflua), oak (Quercus spp.), and pine straw), 
and were regularly stocked with plankton from natal ponds.  Tadpoles were reared at a density of 
18 per tank in 20 tanks. 

A total of 4 replicate dispersal arenas were established on forest/open field boundaries along the 
Overhills power-line corridor on Fort Bragg.  Open field was clear-cut longleaf that was mowed 
seasonally by the utility company.  Forest was longleaf pine savanna.  Each experimental arena 
was centered on an artificial pool (90 cm diameter, 10 cm deep, constructed of black plastic pond 
liner) placed directly on habitat boundaries (Figure 9).  Arenas extended 25 m into forest and 25 
m into open field habitat (total area 50 x 5 m).  They were constructed of 90 cm high, plastic-
weave silt fencing, supported by wooden stakes, the bottom edge of which was buried 15-20cm 
below the ground surface. 

When animals metamorphosed from cattle tanks, they were released into experimental arenas at 
dawn or dusk following rain.  Individuals were uniquely marked using toe clips, weighed to the 
nearest 0.1 gram, and measured as snout-vent length (mm).  Initial releases were in the center of 
the arena at the habitat boundary.  Once individuals were released into arenas, pitfall traps were 
monitored daily and recaptured individuals were identified, measured and released back into the 
center of the arena next to the point of capture.  The first recapture of each individual was used to 
determine the initial distance and initial rate of emigration.  Additionally, these data were used to 
determine initial direction of movement with respect to habitat type.  Subsequent captures of 
individuals allowed estimation of total distances migrated and overall direction of movement.  
Experimental animals were removed from arenas upon their third recapture or upon capture at 
the end of each experimental corridor, and returned to the natal pond.  

 

Figure 9:  Schematic of arenas used for releases in experiment 3. 

3.4.6 VERNAL POOL MAPPING 
Assessing connectivity for amphibians requires knowledge of where breeding ponds are located, 
but amphibian breeding sites are not well mapped by existing spatial data.  Breeding ponds that 
are suitable for amphibians typically remain flooded for only a portion of any given year, and 
they are small relative to the spatial resolution of GIS data, so even National Wetlands Inventory 
data may not provide a good map of small, isolated ponds.  Moreover, in our study area 
amphibians use both natural and artificial wetlands that are created by various human activities.  
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We developed predictive models for both natural and artificial ponds and verified the locations 
of suitable breeding ponds with field surveys. We intentionally selected data sets that should be 
available at comparable resolution for many other areas.  We obtained a 20-foot resolution 
digital elevation model (DEM), stream data (1:24,000 hydrography data from the U.S. 
Geological Survey), and data from Fort Bragg on the locations of dirt roads.  We processed the 
DEM to identify depressions within the landscape and a few other metrics including a wetness 
index that reflects the amount of area located upslope of a point in a landscape and a landform 
index that indicated whether a point is located along the top of a ridge, the side of a hill, or the 
base of a slope.  We also used the DEM to calculate slope and elevation for points within the 
study area.  Finally, we calculated the distance from dirt roads and streams for all points within 
our study area. 

Preliminary analyses of wetland sites using generalized linear models revealed spatial 
autocorrelation in the data, so we switched from using logistic regression to generalized additive 
models (GAMs) to have a more flexible analysis that would allow us to deal with spatial 
autocorrelation directly.  GAMs are similar to logistic regression, but allow for nonparametric 
smoothing functions to be used in fitting data to predictor variables.  If spatial autocorrelation is 
present in the residuals of a GAM, then a smoothing function based on geographic coordinates of 
survey sites can be added to control for the spatial structure of the data (Wood 2006). 

We developed predictive models for natural and artificial wetlands separately.  We generated 
models using data for known locations of natural and artificial wetlands as well as random points 
in the landscape that were not natural or artificial wetlands.  We initially examined a full model 
which included parameters for distance from streams and dirt roads, wetness index, landform 
index, slope, and elevation, and then used a backward selection procedure to systematically 
remove parameters from the original model and determine whether the new model with fewer 
parameters provided a more parsimonious fit.  We assessed the accuracy of our predictive 
models with receiver operating characteristic curves (Freeman and Moisen 2008).  Models with 
an area under this curve that is greater than 0.9 show strong discrimination between sites that are 
and are not wetlands. 

3.5 MOVEMENT SIMULATIONS FOR SFS AND AMPHIBIANS 
In order to predict important dispersal corridors for SFS and rare amphibians on and around Fort 
Bragg, we built spatially explicit movement simulations parameterized with the landscape data 
described in the habitat modeling section 3.3.2 Habitat Modeling with MaxEnt and movement 
data from the butterfly and amphibian releases described in the SFS and amphibian methods 
sections 3.4.1 Field Experiments and 3.3.1 Field Data - Experimental Releases of Appalachian 
Brown).  These simulations are identical in structure for butterflies and amphibians, and 
followed virtual animals originating in current, historic, or potential breeding sites as they moved 
throughout the Fort Bragg landscape.  The simulations used five types of information as input: 1) 
a map of the locations of the  4 major habitat classes (wetlands, riparian corridors, upland forest, 
and open areas including roads and human development); 2) a map of the locations and  sizes of 
waterways (important for amphibian models only, with streams ranked as first, second, third, or 
> fourth order); 3) a map of the locations of potential breeding sites for the focal species (suitable 
wetlands for butterflies and suitable temporary ponds for the amphibians);  4) species-specific 
step length and turn angle distributions in each habitat; and 5) species-specific habitat choices at 
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the edges of each pair of habitats that has common boundaries on the landscape.  For butterflies 
only, we also included habitat-specific probabilities that each move would be followed by a rest, 
and a distribution of rest period lengths.  For amphibians only, crossing probabilities for first 
through third order streams were input, and crossing probabilities of larger waterways were set to 
0.  All habitat data were input at a 30 x 30 m grain covering Ft Bragg, Camp Mackall, and a 5 
km buffer surrounding the bases.  The simulation produced as output the number of times a 30 x 
30 m cell was used by emigrating animals, the number of times a 30 x 30 m cell was used by 
animals successfully dispersing among potential breeding sites, and the number of animals 
successfully dispersing between each pair of potential breeding sites.   

Separate simulations were carried out for SFS and amphibians.  Butterfly simulations were based 
on movement data taken at 5-second intervals (see Field Data - Experimental Releases of 
Appalachian Brown) and amphibian simulations were based on ornate chorus frog movement 
data taken at 5 minute intervals (see Amphibian empirical results section).  We also attempted to 
determine connectivity for gopher frogs assuming that they moved through different habitats 
similarly to chorus frogs.  In particular, we assumed that differences between the species in the 
displacement rates over longer movement paths could be wholly attributed to differences in the 
mean step lengths (i.e., habitat-specific turn angle distributions did not differ between the 
species).  If we further assume that the coefficient of variation (CV) for step length distributions 
was constant between the species, we could use the method of matching moments to 
parameterize habitat specific gamma distributions for gopher frog step lengths from chorus frog 
movement paths.  We did not have sufficient movement data from eastern tiger salamanders to 
model their dispersal, and did not think it appropriate to model their movement based on chorus 
frog movement. 

To estimate the relationship between gopher frog and chorus frog step length distributions, we 
used release experiments for which we had two locations (the release and recapture points) 
separated by 12-60 minutes (N=7 chorus frog paths, 5 gopher frog paths).  We estimated squared 
displacement rates for each species as the slope linear regression of the squared distance between 
release and recapture locations compared to the elapsed time between release and recapture.  We 
then calculated habitat specific mean and standard deviation for gopher frog step lengths as the 
ratio of gopher frog:chorus frog squared displacement (ρ=7.79) times the mean and standard 
deviation, respectively, for chorus frog step length in each habitat. 

For butterflies and amphibians, simulations began with a virtual animal placed in the center of 
each cell located within a potential breeding site.  Consequently, larger breeding sites produced 
more dispersers than smaller sites, corresponding to observations that habitat area was related to 
population size in SFS (Kuefler et al. 2008).  Each animal began moving in a random direction.  
The distance moved was drawn from a gamma distribution fit to the distribution of step lengths 
in breeding (i.e., wetland) habitats input to the model. 

Whether or not the animal continued to move was then determined based on the resting 
probabilities observed during all release experiments and observations of naturally occurring 
butterflies.  The length of time a butterfly rested before continuing to move was similarly drawn 
from a gamma distribution fit to the observed distribution of rest times.  Because rest data were 
not taken for amphibians, we did not include resting behavior in dispersal simulations (i.e. 
resting probabilities were all set to 0), effectively lengthening the total dispersal period 
simulated. 
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Following a rest (if any), the length of the next step was drawn from the wetland-specific step 
length distribution. The direction of successive  moves was determined by drawing a random 
turn angle from the observed distributions of turn angles using the following procedure, which 
retained the overall shape of the observed turn angle distribution while generating a more 
continuous set of possible angles  than were represented in the finite set of observed angles. First, 
the 30 degree bin (0-30, 30-60,…150-180) of the turn angle was drawn from a multinomial 
distribution fit to the wetland turn angles input to the model.  Next, the exact turn angle was 
drawn from a uniform distribution spanning the appropriate 30 degree bin.  Finally, the sign of 
the turn (right or left) was determined from a uniform random distribution (i.e., with 50% chance 
of either sign). 

These steps were repeated until the projected end point of a move was in a cell covered by a new 
habitat type.  If the new position resulted in the butterfly crossing a boundary to a different 
habitat, the program then determined if the move was allowed. In our experimental releases, we 
quantified the fraction F of butterflies starting at rest at the boundary between two habitats that 
moved into the more preferred habitat. To parameterize the simulation models, we had to 
translate F into the probabilities that moving butterflies approaching the boundary from both the 
more- and less-preferred habitats would cross the boundary. To do so, we first assumed that half 
of the butterflies encountering the boundary would come from the more-preferred and half from 
the less-preferred habitat. Next we assumed that all of the latter would cross the boundary (into 
the more-preferred habitat). Let P represent the probability that a butterfly in the former group 
does not cross the boundary (i.e., remains in the more-preferred habitat). With these assumptions, 
we have the relation: 

                                                                      (4) 
(where the two terms on the right hand side are contributed by butterflies approaching the 
boundary from the less- and more-preferred habitats, respectively). Thus we estimate P as 2(F-
1/2), and the probability that a butterfly moves from more- to less-preferred habitat is 1 - P.  

If the move into less preferred habitat was allowed, the butterfly’s location was updated.  If not, a 
new step length and turn angle were drawn, and the process repeated until either the new location 
was in the original cell or the boundary crossing was allowed.  If a new location would take a 
butterfly across multiple cells in a single step, all boundary crossings had to be allowed.    

For amphibian simulations, cells containing streams and rivers were considered to be distinct 
habitats, with different entry probabilities for streams of first, second, third, and fourth or greater 
order and distributions of movement upon entry equivalent to riparian habitats.  Because we 
lacked data on stream crossing probabilities, we considered several scenarios in which 1st-3rd 
order streams had different impacts on amphibian movement.  Here we present the two extreme 
scenarios: that streams below fourth order present no barrier to dispersal (crossing 
probabilities=1) and that all streams act as complete barriers to dispersal (crossing 
probabilities=0). 

Animals continued to move for a number of steps determined by their effective dispersal period 
and the time interval of movement data.  For SFS, the lifespan of each butterfly was drawn from 
an exponential distribution with mean of 3 days, corresponding to the average lifespan of marked 
SFS (Kuefler et al. 2008).  Based on observations of butterfly activity during annual population 
surveys, we assumed that butterflies were active for six hours each day, corresponding to 4,320 
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five-second moves per day.  Because we do not have similar information about amphibian 
dispersal we modeled dispersal periods of 1, 10, and 100 days for ornate chorus frogs, and 100, 
200 and 300 days for gopher frogs to capture a wide range of possibilities.  We assumed 10 
hours of activity each day corresponding to 120 five-minute steps. 

To test the validity of the model, we compared simulation predictions of butterfly dispersal 
probabilities among occupied breeding sites to observed dispersal rates from capture-mark-
recapture (CMR) data taken during annual SFS population monitoring (Kuefler, et al.  2008). In 
these simulations, we included only occupied and historic breeding sites, all of which occur on 
Fort Bragg.  For these simulations, larger breeding sites containing multiple survey transects 
used during annual SFS population surveys separated by at least 30 m were designated as 
separate breeding sites.  SFS movement was simulated as described above, but the simulation 
also tracked the location of each butterfly over a 20 minute period (i.e., 240 steps) every 24 hours 
(six of which were “active” hours) after it began moving until it died. If a butterfly was located 
within a colony at any time during the 20 minute period it was considered to have been 
“recaptured” and the sites where that butterfly originated, was most recently recorded, and was 
recaptured were recorded.  A butterfly was also considered to be “recaptured” if it occurred in 
any of four upland forest areas near surveyed colonies where survey crews typically spent 30-40 
minutes every 2-3 days (approximately half the effort spent in surveyed breeding sites) and 
would have likely seen an SFS flying by (no such butterflies were observed, even for upland 
sites close to wetlands, indicating SFS aversion to upland habitat).   

From these data we calculated the probability that a recaptured butterfly originating in breeding 
site A was recaptured in breeding site B for all pairs of breeding sites, including nondispersal 
events (i.e., butterflies released and recaptured in the same site).  Because effort in uplands was 
not equal to effort in breeding sites, we weighted predicted recaptures in breeding areas 2:1 
compared to predicted recaptures in upland areas before calculating predicted dispersal 
probabilities.  We then tested the predictive power of the model as the Pearson’s correlation 
coefficient between the predicted dispersal probability and the relative frequency of dispersal 
observed from marked butterflies.  We only included pairs of sites located within the same 
drainage since SFS do not appear capable of dispersing the longer distances that separate 
breeding survey sites on different drainages (see ResultsResults and Discussion - Dispersal 
Modeling - Model Results).  Because very few butterflies were recaptured multiple times, we 
restricted our comparisons to first recapture events (including secondary recaptures did not 
change our results).  We conducted 1000 replicate simulations for each year (2002-2007), 
varying the landscape so that only breeding sites occupied and surveyed during each year were 
included.  We also updated the extent of breeding sites to reflect observed changes in suitable 
habitat caused by beaver activity (leading to breeding site expansion) and succession (leading to 
breeding site contraction). 

3.6 EVALUATING MODEL COMPLEXITY  
Two elements are required for a formal assessment of the value of increasing model complexity 
in predicting dispersal.  First, the modeling framework must allow for changes in the 
representation of movement behavior while holding other elements of the model constant.  This 
provides a measure of experimental control when comparing across models.  Second, an 
independent testing dataset must be available to allow researchers to measure changes in model 
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fit with increasing complexity. For this project, these two elements were present for our studies 
of the Red-cockaded Woodpecker and St. Francis Saytr.  We did not have sufficient independent 
testing data to do a similar analysis with amphibians. 

3.6.1 MODEL COMPLEXITY IN RCW 
A maximum likelihood approach was used to find which resistance surface (see Section 3.2.2.1) 
optimally represents RCW prospecting movements.  These surfaces varied in complexity from a 
featureless landscape to one that incorporated both spectral (landsat) and structural (LiDAR) 
attributes.  Each fledgling emerging from its natal territory is surrounded by a unique set of 
environmental features that may influence prospecting behavior. Thus, a discrete-choice model 
used to account for variation in available territories and surrounding environmental features. We 
defined the choice set for each individual as all territories within its prospecting range.  

 

Figure 10: An example of prospecting movements of a radio-tagged juvenile female red-
cockaded woodpecker’s (Picoides borealis) in relation to effective distance surface. A 
number to the upper right of a territory indicates the frequency the bird was observed visiting 
that territory. Territories without numbers were never visited. 

Our discrete-choice analysis evaluated RCW response to landscape features during prospecting 
by comparing the 70 resistance surfaces (2 types of occurrence data x 5 levels of environmental 
complexity x 7 resistance curves) against Euclidean distance in a featureless landscape. The 
response variable in the discrete-choice models was the frequency of territory visits during 
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observed prospecting behavior (Figure 10). The likelihood of a bird visiting a territory within its 
prospecting range for each model was computed and the best predictive model was selected 
based on Akaike’s Information Criterion (AIC) adjusted for small sample sizes (AICc, Burnham 
and Anderson 2002). We also computed the AICc weight (ω), which represents the weight of 
evidence in favor of a model in relation to all the models in the set (Burnham and Anderson 
2002). All discrete-choice modeling was conducted with the package Survival in R (Version 
2.11.0, R Development Core Team 2010). 

We evaluated the best resistance surface using an independent dataset of observed juvenile 
female dispersal events from 2005 (n = 57) and 2006 (n = 39). For each dispersing individual we 
created corridors in ArcInfo Workstation (Environmental Systems Research Institute Inc. 2008) 
by adding the accumulated cost from all least-cost paths between the natal territory and all 
available territories. Sets of available territories for each dispersal event were defined as 
territories with similar distance (with the 25th percentile) from the natal territory as the observed 
destination territory and are within the maximum distance any juvenile female was observed 
dispersing from the natal territory during all the years of banding data (Figure 11). Within this 
analysis we assessed if RCW short-distance dispersers (SDD) interact with the environment 
differently than long-distance dispersers (LDD). We defined the long-distance threshold at 6 km, 
the 95th percentile of the observed foray distance from roosting sites (Kesler et al. 2010). The 
overall performance of the resistance model was evaluated for short and long-distance dispersers 
by calculating the percentage of individuals that dispersed to territories within the 25% least cost 
corridor for each resistance surface (Figure 11). 

 

Figure 11: Examples of long-distance dispersing juvenile female red-cockaded woodpecker 
(Picoides borealis) that settled in a territory within the 25% least-cost corridor. 
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3.6.2 MODEL COMPLEXITY IN SFS 
To determine the movement detail that is needed to predict dispersal in SFS, we compare 
dispersal predicted in simulations of varying complexity to dispersal events observed in a 
capture/mark/recapture (CMR) study of SFS marked in multiple breeding sites in 5 years 
(Haddad et al. 2008). Specifically, we assessed the ability of simulation models of increasing 
complexity to predict the observed dispersal patterns. Importantly, the dispersal data we used in 
the assessment are independent of the movement data we used to estimate model parameters.  

As we noted above, building a more complex model involves greater cost. Therefore, even if a 
more complex model does a better job of predicting observed moves than does a simpler model, 
the simpler model might be preferred if it is easier to build and parameterize but still does a 
reasonable job predicting dispersal.  We assessed the value of building more complex models in 
three ways.  First, we adopt a parsimony approach using information criteria, weighing overall 
ability to predict the observed moves against the number of parameters that needed to be 
estimated to run the model. Second, we compare the predictive ability of the models to the 
financial costs of estimating the parameters.   

The third way we assessed the value of model complexity recognizes that the utility of adding 
greater complexity to predictive models likely depends on the landscape context of a managed 
metapopulation. For example, most pairs of potential source and destination sites in our CMR 
study were separated by either a short distance of wetland matrix or by very large distances SFS 
would not be expected to traverse regardless of matrix composition. Therefore including details 
of movement differences in multiple habitats and at different boundary types may have been 
unnecessary for the simulations to mimic reasonably well the CMR results. However, an 
important goal in constructing dispersal models is to provide a tool for evaluating the 
consequences of management actions that may create a landscape that differs from the one on 
which the model was validated. This is certainly the case for SFS. Efforts are now under way to 
create (through flooding and tree removal) restored wetlands near current breeding sites and to 
translocate SFS into them. Some of these restoration sites will be located closer to habitat types 
that butterflies currently encounter only rarely in the vicinity of breeding sites. The movement 
models we have constructed are intended to help inform the decision of where restoration sites 
should be located to maintain connectivity between breeding sites (both current and restored 
ones).  Therefore, we also ask if model complexity (i.e., the degree of detail about animal 
movement a model embodies) affects its predictions about the level of dispersal between 
breeding sites on a landscape that includes restoration sites, and thus differs from the landscape 
on which the CMR study was conducted.  

 The Full Simulation (hereafter FS) described above represented the most complex model we 
used. To evaluate the need for such a complex model, we compared its ability to predict 
observed dispersal events to that of three simpler models.  In the No Edge (NE) model, we 
retained habitat-specific movements (i.e., distributions of turn angles, step lengths, and rest 
durations) but eliminated boundary behaviors (so that simulated butterflies moved freely from 
one habitat to another). In contrast, in the No Habitat Differences (NHD) model, we applied the 
movement characteristics from the breeding habitat (wetlands) to all locations on the landscape, 
but we retained boundary behaviors where different habitats meet.  Finally, in the Distance Only 
(DO) model, we applied wetland movement characteristics to the entire landscape with no 
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boundary behaviors (thus simulating a pure correlated random walk, in which dispersal should 
depend only on the distance between sites).  

We compared simulation predictions to CMR data to determine how well the simulation 
predicted observed dispersal among SFS breeding sites.  We assessed the fit between model 
predictions and observed dispersal events in the CMR study in two ways. First, we simply 
computed the correlation between the observed and predicted fractions of dispersers starting 
from each breeding site recaptured at all breeding sites (including the original site). This 
approach does not discount for the number of parameters used in the model. Second, we 
computed the multinomial likelihood (appendix) of the observed recaptures for each model, and 
used them to compute the sample-size-corrected Akaike’s Information Criterion (Hurvitch and 
Tsai 1989), which does penalize models with more parameters (see appendix for a description of 
how we determined the number of parameters in each model).   

We compared model fit to the marginal cost of estimating additional parameters in more 
complex models. The background cost of performing the CMR study would have to be paid to 
validate any of the models, or even to test predictions made in the absence of movement data, 
such as those based on simple map distance, incidence function models, or expert opinion. 
Beyond this background cost, the simplest (i.e., DO) model required the additional (marginal) 
cost of measuring movement behaviors in breeding (i.e., wetland) habitat, and parameterizing the 
three more complex models incurred costs of measuring movement in multiple habitats (NE), 
behavior at habitat boundaries (NHD), or both (FS). 

3.7 CIRCUITSCAPE MODELS 
We used the software Circuitscape (McRae et al 2006, 2008) as a complimentary approach to 
individual-based simulations.  Circuit-based dispersal models assume that dispersing organisms 
are analogous to electrical current flowing over a landscape composed of conductors with 
various amounts of resistance, represented by a raster dataset.  Circuit-based models can be 
considered an efficient analytical equivalent to simple individual-based models known as “biased 
random walk” models (McRae et al. 2008), and allow dispersal corridors and “pinch points”, 
where animal movements are constricted to only a few possible paths, to be mapped quickly and 
effectively. These models also allow us to quantify the relative strength of connections between 
all habitat patches, based on their distance and the quality of intervening habitat. 

Circuitscape models require two inputs.  The first input is a raster where valued cells represent 
occurrences of the focal species.   The second input to Circuitscape is a raster of resistances that 
represent the relative impermeability of different landscape features to dispersing organisms.  
Frequently, these resistances are based on expert opinions, but our resistance surfaces were based 
on the empirical movement data we collected.  In the case of SFS and the amphibians, 
resistances were calculated from release experiments.  RCW resistances were taken from the 
optimal discrete-choice model, described in the previous section. 

Unlike the individual-based models that we have developed, boundary behavior is not included 
in Circuitscape models.  Additionally, our individual-based models are constrained to a finite 
number of individuals and movements.  There are many grid cells in our individual-based 
simulations that have not dispersals through them.  In contrast, every grid cell in a landscape 
receives a relative dispersal estimate in Circuitscape. We developed Circuitscape models for 
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each focal species at the largest extents of our anlaysis (a 5km buffer surrounding Fort Bragg and 
Camp Mackall).  These maps were then used in separate, Circuitscape-only, conservation 
prioritization maps (see supporting data).   

We also used a Circuitscape model for RCWs as a substitute for an individual-based model in 
our multi-species analysis.  Although an appropriate individual-based dispersal model does exist 
for RCWs as a component of the spatially explicit population model (Letcher et al. 1998, 
Scheigg et al. 2005), the only landscape features that RCWs respond to in the model are large 
canopy gaps.   Our more detailed analysis of RCW foray movements (Section 3.2) suggest that 
this model may be less-than ideal for spatial predictions of dispersal habitat use for this species.  
While we are in the process of revising the RCW SEPM to reflect our new analysis, this 
modified version of the SEPM is not yet ready for production use.  We anticipate that using 
Circuitscape as an alternative modeling framework for RCWs with the best empirically derived 
resistance surface from Section 3.6.1 will result in very similar results to what we would achieve 
with an individual-based simulation. 

3.8 MULTI-SPECIES INTEGRATION 
The key to integration of the different modeling approaches is that each model produce similar 
output. Though the models differ in complexity and approaches used, they all produce raster 
maps with identical geographic projection, cell sizes, and total extent. The output from each 
model thus overlies precisely on the output from each of the other models. The values contained 
in these maps always represent the same variable: the relative probability of visitation during 
dispersal. This is a measure of connectivity for individual species. Each model may derive this 
probability using different data and assumptions appropriate for the particular species being 
modeled, but they all estimate how frequently each pixel is visited as the organisms move across 
the landscape. 

3.8.1 ZONATION 
The outputs of all our simulation models and Circuitscape models were rasters where each cell 
represented an estimated probability of dispersal.  In the case of simulations, outputs were the 
relative frequency that a cell was used by any individual during the simulation run.  In the case 
of Circuitscape, outputs were the relative probability of movement through each cell.  The 
objective of the study was to take these dispersal models outputs and combine them to assess the 
multi-species conservation value of landscape locations. 

A variety of methods exist to integrate the species dispersal maps.  The simplest would be a 
linear combination of the dispersal maps for each species.  There are a few weaknesses to this 
approach.  First, species with a greater area of quality dispersal habitat tend to dominate the 
results.  Second, the larger spatial structure of habitats is ignored in a linear combination of 
dispersal maps.  That is, the method does not take into account neighboring cells when 
evaluating conservation priority.  The algorithm that we used, Zonation, addresses these 
weaknesses in the way it assigns conservation value to pixels. 

Zonation creates a conservation priority map of ranked pixels where high ranks are given to 
areas of high priority and low ranks are given to areas of low priority.  It is an edge deletion 
algorithm, meaning that the algorithm begins on the periphery of the map, assigns a rank to the 
cell with the lowest conservation priority, removes that cell and sequentially ranks and removes 
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cells from the outer edge until no pixels are left to rank.  For each grid cell on the periphery of 
the map, the zonation algorithm sums the species-specific connectivity measure weighted by the 
total amount of connectivity in the remainder of the landscape. The connectivity value, delta, of 
cell i is evaluated for all species j as 

                                                              (5) 

where Qj(S) is the proportion of the distribution of species j remaining in the set of all of the 
unranked patches S, wj is the weight given to species j, and ci is the economic cost of protecting 
patch i. The single grid cell with the lowest multi-species connectivity value is then removed. 
Since the periphery of the map is changed once a grid cell is removed, the algorithm then 
compares all the cells along the new periphery in the same manner, always removing the least 
valuable grid cell.   The output from the zonation algorithm is a ranking of raster cells by 
conservation value. Because the algorithm begins at the edges of the raster, it will give a high 
ranking to connections between patches. There are many possible parameterizations of the 
Zonation software.  We used the standard zonation settings to generate our conservation priority 
maps. 

3.8.2 MULTI-SPECIES ANALYSIS 
We generated a set of conservation priority maps from both our Circuitscape dispersal models 
and the individual-based simulations using Zonation.  These priority maps provided the multi-
species conservation recommendations that were the ultimate goal of this study. They are a test-
bed for evaluating the realism of our simulation outputs and the Circuitscape models.  We 
generated these maps for both of our spatial extents.   

3.8.3 FLAGSHIP SPECIES TEST 
The management of RCW populations strongly influences conservation decisions in the 
Sandhills region.  In order to test whether RCWs are a good proxy for connectivity of other 
species, we generated two landscape prioritizations using the Zonation algorithm.  One scenario 
considered RCWs only, while the other was a “balanced” scenario that was based on dispersal 
habitat use for all of our target species, giving each species equal weight.  We compared the 
highest-priority habitats (90th percentile) across the two scenarios to evaluate the extent and 
distribution of important dispersal areas for other species that might be “missed” by focusing just 
on RCWs. 

3.8.4 DEVELOPMENT SCENARIOS 
We compared our conservation priority maps against a likely scenario of human development in 
the area.  This comparison highlighted areas that were both important for maintaining 
connectivity across species and were likely to experience pressure from urban or suburban 
development.  This "threat map" was developed from a set of land-use suitability products from 
the environmental nonprofit Sustainable Sandhills along with an urban growth simulation for the 
year 2100 generated for the US Geological Survey’s Southeast Regional Assessment Project 
(Jantz et al. 2009, Dalton and Jones 2010).   
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Sustainable Sandhills created a set of three suitability maps that represent relative suitability of 
lands for residential, commercial, and industrial development based on criteria such as 
population density, road and sewer access, and flood risk.  For each map, lands were assigned a 
rating between 1 (low suitability) and 9 (high suitabilty). The criteria for each map were 
developed in a series of focus groups held with county planners and other experts. Details appear 
in the Technical Report, which is available at 

http://www.sustainablesandhills.org/Release2Workshop.html. We averaged the three different 
suitability indices to arrive at a relative score that we have taken to represent an overall index of 
suitability for the development of human infrastructure.  Notably, no explicitly environmental 
criteria were included in the suitability indices.  We converted this index into a binary map using 
a threshold that represents “moderate suitability for development”.  

The areas highlighted as suitable for development by Sustainable Sandhills do not take into 
account anticipated trends in population that drive urban growth.  To select those areas that are 
truly threatened, we used an urban growth simulation based on the SLEUTH cellular automaton 
model (Jantz et al. 2010) which was generated by the Biodiversity and Spatial Information 
Center.  The urban growth model generates spatial estimates of urban development probabilities 
for the years 2010 - 2100.  From this model we considered lands with a 5% or greater probability 
of urban development as “threatened”.  The areas that we consider most at risk for urban 
development are those “threatened” areas that are also considered “suitable” by Sustainable 
Sandhills.  Although future patterns of urban development are highly uncertain, focusing on 
lands identified by these two independent methodologies reduces that uncertainty somewhat. 

  

http://www.sustainablesandhills.org/Release2Workshop.html�
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4 RESULTS AND DISCUSSION 
In this section we review the results of our efforts to characterize dispersal landscapes, collect 
empirical data on movement behaviors for our target species, and discuss the results of our 
simulations of wildlife movement.  We also present the results from our integration of these 
different dispersal models to identify areas of the landscape that are important for maintaining 
landscape connectivity for multiple species and describe a GIS toolbox that we have developed 
to allow wildlife managers to evaluate the influence of landscape change on connectivity for 
wildlife. 

4.1 LIDAR FOREST COVER ESTIMATES 
Posterior estimates captured the vertical characteristics of forests types within the 5 intensively 
studied cells (Figure 3). The open longleaf pine estimates showed a peak at 15-20m, with a 
relatively low density at 5-10m (the absence of an oak understory) and a relatively high density 
below 3m (grass density near the ground). The bottomland hardwood showed high density at all 
heights below 20m. The longleaf forest with oak understory showed intermediate understory 
density between the bottomland hardwood and open long-leaf pine forests. The mixed-hardwood 
forest canopy density distribution was the roughly the same shape as dense longleaf forest, but 
the estimated canopy density at all heights was approximately 10% greater. The open grassland 
cell had a relatively low density of vegetation at all heights. Canopy density below 18m was 
greater than 0, however, because there was some longleaf pine encroachment at the edges of the 
cell (Figure 12). 

 

Figure 12:  Posterior canopy height profiles of 1m height intervals for the five intensive cells 
along with the raw LiDAR return densities and prior densities. 95% credible intervals are 
shown for the posterior, and 1 standard deviation for the prior. 

The most important result of the model is the increase in the credible interval width at lower 
heights. This effect is more pronounced in sites with greater canopy density at the highest points 
on the canopy. With a dense overstory, the number of returns at lower canopy heights is reduced 
resulting in broader credible intervals. In sites like the open grassland, credible intervals are 
narrow at lower heights because the number of returns from these heights is greater than in the 
forest interior. 

The effect of the prior on posterior estimates was small. Changes for maximum standard 
deviations of 0.1% yielded only a 0.03% change in mean canopy density and for maximum 
standard deviation of 0.01%, a 0.3% change. Even when the average error in empirical 
estimation of canopy density was less than 0.1%, the change in the posterior estimates of canopy 
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density was less than 1%. This was due to the sheer number of LiDAR returns. The mean of the 
posterior beta-distribution is         

                                                            (6) 

where μk is the mean of the prior expectation of canopy density and φkIis the degree of belief or 
weight of that expectation.  It is apparent that μkφk would have to be close to the number of 
returns nk for the effect of the prior to be significant. There were about 1 × 104 returns per cell. 
The prior data accuracy parameter would have to be extremely small for μkφk to be close to 
10000 or even 100. The effect of the prior will increase at lower heights as the signal is 
attenuated and the number of returns decreases. 

Across the entire study site, the pattern of density estimates reflects the distribution of forest 
types observed on the ground. For example, the dense understory of bottomland hardwood forest 
running from NE-SW in the NW corner of the site is apparent in the 2-5m posterior estimates. 

Previous studies have shown that LiDAR data does not predict canopy density in the understory 
as well as it predicts the density of the canopy surface (e.g. Lefsky, 1997; Harding et al., 2001). 
Our model shows that these poor predictions are dependant upon attenuation of the LiDAR 
returns in the overstory. This attenuation affects both the mean and the variance of canopy 
density estimates. The mean is affected because, for a given canopy density at a low height, the 
number of returns changes with overstory density. So in a dense forest, 100 returns of heights 2-
5m may have the same canopy density as an open field that has 1000 returns at 2-5m. By 
considering canopy density to be the result of a binomial sample whose size is the number of 
returns at the focal height class and below, the estimates become conditionally independent of 
the returns at heights above. When we consider the sampling process of LiDAR in this way, 
statistical analyses that include only raw quantiles of LiDAR data become suspect. 

The second effect of attenuation in the overstory is to increase the variance of estimates in the 
understory. Because many returns are reflected in the overstory of dense forest, there are fewer 
returns from which to make inference about canopy density at lower heights. This is a 
mechanistic property inherent in LiDAR data, and there’s no clear way to overcome this during 
data collection. However, we can quantify this effect and explicitly include the changes in 
confidence of our estimates of density in the lower canopy. The model we have presented does 
that in the simple context of binomial sampling, providing a means to quantify the variability of 
canopy density estimates for the understory. 

Even though we have presented a Bayesian model that uses prior information to help train the 
estimates of canopy density from LiDAR, the choice of prior does little to affect the estimates. 
There are two conclusions to draw from this. The first is that the Bayesian perspective could be 
supplanted by a maximum-likelihood approach, which did not include prior information. In 
doing this, our approach could dovetail directly with common regression approaches used to 
measure the correspondence between field-derived forest metrics and LiDAR-based metrics. 
Using a mixed-effect model, beta-distributed error in LiDAR returns could be included as a 
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random effect in canopy density dependent upon the number of returns. The advantage of the 
simple Bayesian model lies in the potential to add other complexities, such as spatial dependence 
and scan angle to the model, and we expect future application to move toward this approach. 

The second interpretation of the small prior effect is that LiDAR data provide more precise 
estimates of canopy density than is feasible using practical field methods except certain ground-
based LiDAR systems. Prior information of canopy density needed to be accurate within 0.1% to 
alter the posterior estimates of canopy density by 1% for our grain size of 50m×50m. We know 
of no field method which can estimate canopy density to within 1%, and, in any case, research 
questions in forestry and ecology rarely require canopy density estimates that are accurate to less 
than 1%. 

There is a trade-off between the precision of canopy density estimates and the grain at which 
LiDAR data are binned. Smaller grains have fewer LiDAR returns and wider credible intervals. 
It is just the opposite for larger grains. The advantage of smaller grains, even though their 
credible intervals are larger, is that the model more closely fits one of its key assumptions, 
namely, that canopy density is randomly distributed horizontally. The same logic applies with 
the vertical binning of heights. More bins means fewer samples per bin but a more finely divided 
canopy. 

So, what is the best grain for a given dataset? We suggest that this decision be made based on the 
precision of the canopy density estimates needed to answer the research question at hand. We 
have presented our model as a way to include error in estimates of canopy density. An alternative 
approach is to fix the maximum error at, say, 10% canopy density, then build estimates for a 
variety of grains choosing the smallest grain for which the 10% credible intervals are achieved. 
In this way, the smallest reasonable grain is used for answering the research question. 

Because we did not include spatial dependence in our inference, the credible intervals of our 
model are narrower than the data might suggest under a more complex model. We have treated 
the number of returns at a given height as conditionally independent of the returns higher in the 
canopy. In one sense, this is necessary because the populations of inference at the focal heights 
are the successes (returns at the focal height) and failures (returns below the focal height). 
Returns above the focal height do not affect the number of reflections. 

The estimates of canopy density, however, are not spatially independent because vegetation is 
spatially autocorrelated (Legendre and Fortin 1989), both vertically and horizontally. So, 
horizontally at a given height, two adjoining cells are more likely to have similar covers than two 
distant cells. Likewise, in the vertical dimension, given a canopy density of 50% at a height of 2-
5m, canopy density at 5-10m is more likely to be 50% than it is to be 0% or 100%. This 
autocorrelation reduces the effective sample size, because some of the returns at a given location 
and height are due to its proximity to neighboring voxels. This should result in increased credible 
intervals for canopy density estimates. 

We have presented a simple probabilistic model for inferring canopy height profiles from 
multiple return LiDAR data. This model has a closed-form solution so estimates and credible 
intervals can be quickly calculated for large datasets, and it adopts a Bayesian perspective so that 
prior estimates of canopy density can be included. Given that this probabilistic model is as easy 
to implement as its deterministic counterparts such as FUSION (McGaughey, 2007), we see no 
reason to continue with the deterministic approach to estimating canopy density. 
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4.2 RED COCKADED WOODPECKER 
4.2.1 RADIO TELEMETRY 
Radio tracking effort in 2006 and 2007 produced an average of 40 (SE = 4.88) and 121 (SE = 25) 
locations per individual, respectively. The majority of these locations (68.1% for 2006 and 
78.2% for 2007) were defined as prospecting movements (i.e., away from the roosting territory). 
We observed 282 and 533 territory visits by prospecting individuals in 2006 and 2007, 
respectively. The number of visits ranged from 1 to 23 territories per female with 49% of the 
individuals visiting at least one territory multiple times. The maximum prospecting range from a 
roosting site was 8.9 km ( X = 3.54, SE = 0.28).  This study is the first to document prospecting 
via forays by juvenile RCWs.  We also discovered another previously unknown dispersal 
behavior, which we termed jumping.  Following a period of typical foraying, jumpers make long-
distance, unidirectional movements far beyond previous foraying range in a single day, and thereafter 
remain at and foray from the new location to which they jumped. We describe jumping and its 
significance in explaining the “fat tail” of the RCW dispersal distance distribution in Kesler et al. 
(2010). 

4.2.2 MAXENT MODELS 
Maxent models with an AUC value above 0.75 are considered informative (Elith et al. 2006). 
The simplest habitat suitability model based on four land-cover classes did not reach the 0.75 
cutoff (Figure 13). All other habitat suitability models performed much better (AUC > 0.85), 
with the models’ accuracy increasing with the complexity of environmental data (Figure 13). The 
accuracy of habitat suitability models increased by 5% with the combination of Landsat and 
LiDAR data relative to either alone. There was then a slight increase in accuracy when the 
discrete land-cover data were included with all the remote sensing parameters (Figure 13). Based 
on AUC, Maxent models trained with environmental data at breeding sites were slightly better 
than models trained with environmental variables at prospecting locations (Figure 13). 
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Figure 13: The Area Under the Curve (AUC; +/- SE bars) for each Maxent model used to 
create resistance surfaces that predicted how red-cockaded woodpeckers (Picoides borealis) 
interact with environmental cues during prospecting in the Sandhills ecoregion of North 
Carolina.  
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Figure 14: The probability of red-cockaded woodpecker (Picoides borealis) presence based 
on forest structure variables located at non-natal telemetry locations and percent contribution 
(PC) of each variable in the top-ranked habitat suitability model for the Sandhills of North 
Carolina. red line indicates average and blue shading indicates standard error. 
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Figure 15: Box plot of percent midstory cover (1 to 8 m) in relation to habitat suitability and 
the friction value in the top-ranked model predicting red-cockaded woodpecker (Picoides 
borealis) prospecting movements. The line indicates the top-ranked rescaling constant 
explaining the relationship between habitat suitability and friction values. 

The forest structure parameters that contributed most to the best habitat suitability model were 
percent cover of the midstory vegetation (1 – 8 m), maximum vegetation height, and the 
skewness of the vegetation height distribution for both LiDAR sensors (Figure 14). Prospecting 
individuals tend to avoid areas containing even small percentages of midstory cover. The median 
percent midstory cover (1 – 8 m) was less than 10 % when habitat suitability was greater than 
0.6. Decrease in habitat suitability from 0.6 to 0.1, corresponded to a steady increase in the 
average percent midstory cover. Very unsuitable habitat (< 0.1) is primarily composed of open 
and non-forested areas. RCWs used forested areas where maximum tree heights ranged from 13 
to 25 m.  The relationship between probability of observing RCWs and maximum tree height 
varied by LiDAR sensor (Figure 14). The eastern sensor (2 m spacing and 9 cm RMSE-z 
calibration) predicted maximum tree height to have a unimodal shape peaking at 13 m, while the 
western sensor (2.5 spacing and 12 cm elevation RMSE calibration) had a broader range of tree 
heights associated with a high probability of observing RCWs (15 – 28 m). The probability of an 
individual prospecting through a forest increased when the distribution of vegetation heights had 
a slight positively skewed distribution. A positively skewed distribution of vegetation heights 
represents a small but consistent density of returns depicting the canopy with the majority of the 
returns reaching the herbaceous vegetation in the understory. This description matches mature 
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longleaf pine forest with an open canopy and minimal midstory vegetation (Peet 2006). 
Skewness varied slightly between LiDAR sensors (Figure 14). The eastern sensor predicted 
slightly positive skewness values, while the western sensor had a broader range of positive 
skewness values related to a high probability of observing RCWs. Median vegetation heights and 
percent cover classes greater than 8 m did not strongly contribute to the forest structure habitat 
suitability model. 

We used the habitat suitability models of varying complexities described above, and different 
rescaling constants (Section 3.2.2.1) to evaluate which resistance surface optimally predicted 
RCW forays.  The details of this analysis can be found in the section on model complexity 
(Section 4.6.1).  The discussion below uses the top-ranked model from that analysis. 

4.2.3 MODEL VALIDATION 
We used a separate set of observed juvenile female dispersal events from 2005 and 2006 to test 
the ability of the top-ranked discrete-choice model based on foraying behavior to predict natal 
dispersal destinations. We counted instances in which a female occupied the breeding position in 
a territory other than the natal territory at age one as natal dispersal. Very few individuals 
dispersed to territories located in corridors with high (>50%) cumulative cost distances, even 
when they were a similar straight-line distances from the natal territory as territories with lower 
cost-distance (Table 3). Over 60% of the individuals selected territories within the 25% least-cost 
corridor. There was a sharp decline in number of individuals dispersing to territories located on 
the wider and effectively more difficult to traverse corridors. More than 70% of the short-
distance (i.e., < 6km) dispersal events for both years fell within the 25% least-cost corridor. 
Accuracy of prediction of long-distance dispersal events varied by year. In 2006, 60% of long-
distance dispersal events fell within the 25% least-cost corridor, compared to 39% in 2005. 

Table 3: The percentage of short-distance (SDD) and long-distance (LDD) dispersing 
juvenile female red-cockaded woodpeckers (Picoides borealis) that settled into territories 
within corridors derived from resistance surface based on non-natal telemetry locations, 
forest structure and a moderate rescaling constant (c = 4). 

Year  Percentile Corridor SDD  LDD  Total  

2005  

0 – 25 79 %  39 %  63 %  

25 – 50 18 %  39 %  26 %  

50 – 75 3 %  18 %  9 %  

75 – 100 0 %  4 %  2 %  

2006  

0 – 25 71 %  60 %  67 %  

25 – 50 25 %  40 %  31 %  

50 – 75 4 %  0 %  2 %  

75 – 100 0 %  0 %  0 %  
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Because of the historical banding data collected in our study area, we were able to validate our 
top-ranked resistance surface model against an independent dataset of dispersal events. Most of 
the short-distance dispersing RCWs selected breeding sites within the lowest 25% least-cost path 
created from the resistance surface. However, the long-distance dispersers did not 
overwhelmingly select territories within the 25% least-cost path. These results suggest that short-
distance dispersers are strongly affected by forest structure represented in the resistance surface. 
Long-distance dispersers were much less consistent with the 25% least cost path, suggesting that 
they are not strongly influenced by environmental features during dispersal, or the environmental 
cues affecting long-distance movements are not represented in our resistance surfaces. In fact our 
observations during the radio telemetry study indicate that long-distance dispersal involves 
different behavior (i.e., jumping) than the foraying behavior used by short-distance dispersers, on 
which our resistance surfaces are based. It is likely that jumpers interact differently with the 
landscape than foraying birds, for example some were observed to cross very large openings, 
something that foraying birds do not do (Kesler et al. 2010). 

In one of the few recent studies to validate resistance surfaces with empirical data Driezen and 
colleagues (2007) correctly predicted approximately one third of hedgehog (Erinaceus 
europaeus) dispersal routes based on the best resistance surface, a result similar to our long-
distance dispersal results. They suggested that conspecific interactions could have contributed to 
their limited ability to predict dispersal events with environmental variables alone. However, 
combining the resistance surface with conspecific cues did not increase explanatory power when 
predicting RCW dispersal events (Trainor et al. In Preparation).  

4.2.4 GRAPH NETWORK MODELS 
The geographic and functional networks contained similar trends in metrics as the edges were 
iteratively removed by decreasing the threshold distances (Figure 16a and Figure 16).  Both 
networks have a relatively abrupt transition between connected and disconnected networks.  As 
dispersal ability increased, the number of components sharply decreased and the largest 
component grew in size.  However, the transition between connected and disconnected networks 
was more distinct with the geographic distance networks.  The largest component in the 
geographic networks quickly increased until the edge threshold distance reached 1.7 km.  The 
connectivity of RCW territories then remained relatively constant until the dispersal ability 
reached 4.5 km, which is when the network represented a completely connected RCW 
population (Figure 16a).  The functional network contained a more gradual transition between 
connected and disconnected network of RCW territories (Figure 18a).  The functional distance 
networks’ largest component gradually increased with dispersal ability through a wide range of 
natural and human-modified landscape features. 

A species’ capability or quickness to traverse between any pair of nodes within the largest 
component corresponds to the network’s diameter (Urban & Keitt 2001).  The trend in diameter 
varied greatly between the two types of networks.  The geographic network’s diameter quickly 
transitioned from relatively disconnected to connected network with a sharp increase in the 
diameter that closely corresponded with the abrupt increase in the component size (Figure 16a).  
This suggests that the largest component was slow to traverse because it contained many short 
connections.  Once the network is connected, increasing dispersal ability allows faster 
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connections between territories. In contrast, the functional distance network’s diameter was 
consistently smaller and did not have the drastic change with dispersal ability (Figure 17a). 

The frequency distributions of the observed geographic and functional dispersal distances were 
fitted to the lognormal distribution based on Kolmogorov-Smirnov test (p > 0.05). The threshold 
between connected and disconnected RCW populations for the geographic network was 
equivalent to the 25% cumulative distribution of the observed dispersal distances (1.7 km, Figure 
16b).  The population is expected to be completely connected when the observed dispersal ability 
reached a cumulative distribution of 60% at 4.5 km.  According to observed dispersal ability 
with functional distance, the abrupt transition into connected RCW population is reached at 32% 
and the network is not completely connected until the dispersal ability reached 80% cumulative 
distribution (Figure 17b). 
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Figure 16: The number of graph components, graph order, and diameter of geographic 
networks with iterative edge thinning (a). Arrows and percentages represent the cumulative 
percent of juvenile red-cockaded woodpecker (Picoides borealis) observed dispersing in the 
North Carolina Sandhills ecoregion.  The frequency of observed geographic dispersal 
distances with the line representing the fitted distribution based on lognormal function (b). 

B 
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Figure 17:  The number of graph components, graph order, and diameter of functional 
distance networks with iterative edge thinning (a). Arrows and percentages represent the 
cumulative percent of juvenile red-cockaded woodpecker (Picoides borealis) observed 
dispersing in the North Carolina Sandhills ecoregion.  The frequency of observed dispersal 
distances based on least-cost path with the line representing the fitted distribution based on 
lognormal function (b). 
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When comparing observed dispersal events in relation to potential destination territories, most 
individuals dispersing less than 6 km selected territories that were effectively closer than 
territories with similar Euclidean distances (Figure 18).  Individuals that dispersed greater than 6 
km (i.e., long-distance dispersers) did not consistently select territories that were effectively 
closer than territories with similar distances.  These results suggest that short-distance dispersing 
RCW are influenced by the landscape features, specifically forest structure, between their natal 
territory and the destination territory.  RCWs dispersing greater than 6 km are less influenced by 
the intervening landscape features, as suggested by our observations of jumpers (see above).  
Thus, RCW dispersal behavior within foray distance of 6 km is best represented by a graph 
network created with the functional distances.  This suggests that the dispersal ability represented 
with geographic distances within a RCW graph network should be replaced with functional 
distances.  The functional distance network with moderate dispersal ability (50% cumulative 
distribution function) closely matched the observed dispersal movements (Figure 19 and Figure 
20). 

 
Figure 18: A plot comparing observed functional distance dispersed and the average 
functional distance of territories with similar Euclidean distances.  Shaded box indicates the 
short-distance dispersal events (< 6 km) and arrow is pointing to the above example. 

Most of the short-distance dispersing individuals (99%, 215 out of 217) stayed within their natal 
component defined by a 50% probability of dispersal with a functional distance network (Figure 
20).  The two individuals that did move between components dispersed more than 5 km and 
moved to adjacent components. In contrast only 58 out of 80 long-distance dispersers (72%) 
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remained in their natal component and the majority of these individuals (76%) remained in the 
largest component, which was primarily composed of the territories on Fort Bragg.  Most of the 
long-distance dispersing individuals leaving their natal component traveled to a component that 
was connected by a 25% least-cost corridor (Figure 20).  Four individuals dispersed to 
components that were not connected by the 25% least-cost corridor.  The validated connectivity 
estimates suggest that groups of RCW territories are relatively isolated in the Sandhills 
population due to limited flow of individuals between managed areas. 
 

 

 

Figure 19: The connectivity of juvenile female red-cockaded woodpecker (Picoides borealis) 
territory groups based on the functional distance network with a dispersal ability at the 50% 
cumulative distribution function of observed dispersal distance. Edges connecting the Fort 
Bragg/Southern Pines network are yellow, edges connecting the Pinehurst network are pink, 
Edges connecting the Camp Mackall / Sandhills Gameland Block B network are light green, 
and those connecting the Sandhills Game Land Block A network are dark green. 
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Figure 20: The percent of long-distance dispersing red-cockaded woodpeckers (Picoides 
borealis) selecting a breeding site in a different component.  Warmer colors indicate larger 
functional distances from the boundary of each sub-population. 

The graph-theoretic approach has become a useful tool to estimate and visualize species 
connectivity throughout fragmented ecosystems with modest data requirements (Calabrese and 
Fagan 2004).  However, infusing biologically relevant information into graph networks 
substantially increases the accuracy and insight into species connectivity. For example, a 
geographic network with median dispersal ability of 3.5 km (Kesler et al. 2010) implies that 
almost all RCW territories would be easily connected in the Sandhill ecoregion (Figure 16).  This 
simple depiction of dispersal ability fails to account for varying RCW movement behavior within 
and between patches of longleaf pine forest.  RCWs preferred to travel through forest stands 
similar to their breeding and foraging habitat characteristics, a tall canopy with minimal midstory 
vegetation. Juvenile female RCWs perform complex prospecting movements, leaving and 
returning to their natal area many times before the final dispersal event to assess the relative 
quality of adjacent breeding sites (Kesler et al. 2010, Trainor et al. In Preparation). Our results 
also suggest that within the prospecting range of 6 km, juvenile females dispersed to territories 
that were effectively closer based on forest structure and human-modified landscape features.  
Positive and negative environmental cues guiding movements of individuals during prospecting 
may influence subsequent dispersal events. Therefore, incorporating movement behavior in 
relation to the surrounding environment by using a resistance surface provided insight into RCW 
connectivity in the currently fragmented landscape.   

One way to validate a graph is to determine if observed dispersal events follow the graph 
network assumptions.  By definition, components are isolated subgraphs with no movement 
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observed between components.  The functional distance network based on 50% cumulative 
distribution probability closely matched the observed dispersal behavior in relation to the 
delineation of components.   Based on observed dispersal events, 99% of the individuals 
dispersing up to 6 km remained within their natal components.  This provides strong evidence 
that this network portrays the current connectivity of the population.   

According to the validated network, RCW territories were strongly connected within managed 
properties.  High connectivity of RCW territories within properties is most likely associated with 
current habitat management practices.  A large portion of RCW management practices have been 
directed towards preserving and restoring habitat at breeding territories and adjacent foraging 
areas (U. S. Fish and Wildlife Service 2003, Darden 2004).  For example, on Fort Bragg 
extensive management of RCW cavity trees and foraging habitat with frequent prescribed burns 
has created a well-connected network of over 400 territories within the longleaf pine ecosystem 
(Britcher and Patten 2004).  Unfortunately Fort Bragg, like many military installations, is a small 
island of managed ecosystems surrounded by urban development and agricultural land-use 
activities (Warren et al. 2007).  As a result, few fledglings from eastern Fort Bragg were 
observed dispersing through surrounding development and agricultural fields to other 
conservation properties with established territories.  Movement between the three components in 
the western portion of the Sandhills region was also limited even though these components 
combined have similar spatial extent to Fort Bragg (Figure 19).   

There was an asymmetric flow of individuals from military installations into the other conserved 
properties (Figure 20).  This is possibly due to higher requirements for federal land management.  
Federally owned land has the most restrictions and active management requirements through the 
Endangered Species Act (ESA).  The federal government is mandated to avoid “take” as it is 
defined in Section 9 and to implement conservation programs (Kennedy et al. 1996).  Section 7 
(a) of the ESA requires federal agencies to use their authorities to carry out programs for the 
conservation of endangered and threatened species (U.S. Department of the Interior 1996).  In 
addition, military installations containing endangered species are required to develop endangered 
species management plans to identify, protect, and manage the recovery of the listed species and 
habitats (Frost 2006). 

Our results suggest that persistence of healthy RCW populations requires management to extend 
beyond territories. In order to accomplish this goal conservation strategies need to incorporate 
species movement behavior between managed properties and habitat patches.  RCWs prefer to 
travel through forest stands with a tall canopy with minimal midstory vegetation (Figure 14) 
while movements are strongly inhibited by open or developed areas (Kesler et al. 2010).  
Therefore, environments between established populations should encourage RCW movements by 
managing longleaf pine forest with reduction and removal of dense midstory vegetation. 

Understanding how individual movements in fragmented landscapes connect populations is 
necessary to establish and implement effective management strategies to increase wildlife 
persistence and overall ecosystem function (Woodroffe 2003).  Long-term monitoring projects 
and technological advances in radio-telemetry are starting to provide greater insight into species 
movement behavior.  However, there is a significant delay incorporating movement data to 
evaluate the flux of individuals predicted with graph networks (Urban et al. 2009).  This study 
provides a method to incorporate dispersal behavior via monitoring data to improve species 
connectivity estimates with graph networks. 
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Using data to parameterize nodes and edges can decrease the uncertainty in a network model and 
connectivity estimates.  The overall network is sensitive to delineating and selecting the 
minimum patch size for the nodes (Minor et al. 2008, Lookingbill et al. 2010).   Recently, 
wildlife conservation studies are expanding the definition of nodes to include locations of 
individuals or roosting sites (Rhodes et al. 2006, Garroway et al. 2008).  By defining nodes as 
territory centers in our study we were able to remove the decision of minimum patch size.  More 
importantly we were able to examine the connectivity within habitat patches by allowing small 
changes in movement behavior due to fine detailed landscape features. 

The simplest type of connectivity is based only on the spatial arrangement of habitat patches 
(i.e., Euclidean distance between patches) surrounded by a featureless landscape (Calabrese and 
Fagan 2004).  However, species movement behavior is strongly linked to the spatial 
configuration of the landscape, as a result both aspects are needed to evaluate how species 
respond to and orientate themselves within and between habitat patches (Bell 1991, Gautestad 
and Mysterud 1993, Brooks 2003).  This study gives further evidence that edges created with 
resistance surfaces increase the biological relevance of species connectivity. 

When resistance surfaces are used to predict a species’ connectivity, the most important step is to 
select biologically relevant friction values (Adriaensen et al. 2003). However, friction values are 
usually defined based on subjective expert opinion or are converted from species habitat 
preferences during common daily activities or at breeding sites, and therefore are not 
representative of dispersal behavior (Schultz and Crone 2001, Schadt et al. 2002). Friction values 
derived from routine movements may not accurately depict an individual’s reaction to landscape 
features outside their habitat because behavior may differ during dispersal through non-habitat 
(Palomares et al. 2000). Due to difficulty of obtaining detailed dispersal data, few studies have 
validated friction values with independent movement data (Driezen et al. 2007, Rabinowitz and 
Zeller 2010).  We were able to empirically estimate resistance surface at a regional scale by 
combining radio-telemetry data during prospecting behavior and LiDAR data.  Then with 
empirically estimated resistance surfaces and observed dispersal data we were able to confidently 
predict the flux of individuals between territories and overall RCW connectivity. 

4.3 SAINT FRANCIS’ SATYR 
4.3.1 CHOICES OF APPALACHIAN BROWN BUTTERFLIES RELEASED AT HABITAT 

BOUNDARIES  
Across all types of experimental releases, ABBs had the highest probability of moving into 
riparian forest habitat (0.84) and wetland habitat (0.59), and they exhibited a strong aversion to 
open-field and urban-developed habitat types (0.03) (Table 4). In all cases where open-field 
habitat was a potential choice, released butterflies rejected it in favor of the other habitats. 
Likewise, in all but one case in which urban development was a choice, butterflies favored the 
other habitat. Overall, upland forest was neither strongly favored nor rejected (entry probability 
= 0.53). Comparisons across pairwise combinations show that the adjacent habitat can make a 
difference in selection frequency of a habitat. By every measure (initial choice, most occupied, 
final choice) preference (p) for either riparian (p = 0.026, 0.006, 0.002 for each respective 
measure, df = 2) or upland forest (p < 0.001 for all measures, df = 3) differed among pair-wise 
choices. There was a strong preference for riparian habitat unless it was adjacent to a wetland.  
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Upland forest was strongly favored when paired against open or developed habitat but strongly 
avoided when paired against riparian forest and mildly avoided when paired against wetlands. By 
no measure did preferences differ among choices involving either wetlands or open habitats, as 
we observed a consistent preference for wetlands and a consistent avoidance of open habitats. 
Our analyses with binomial tests mirrored these results. Butterflies showed no preference 
between wetland and riparian forest habitats, and between wetland and upland-forest habitats 
(Table 4). Wetter habitats tended to be selected over drier ones, although only significantly so for 
the riparian forest-to-upland forest comparison. However, upland forest habitat was chosen 
significantly more frequently than developed or open-field habitat.  

Table 4: Results from a series of binomial tests for choices at habitat boundaries (Table 1 from 
Keufler et al. 2010) 

 

4.3.2 HABITAT-SPECIFIC MOVEMENT CHARACTERISTICS  
We analyzed data from the individual movement paths of 116 ABBs, including habitat-specific 
movement data from 62 of the butterflies released for habitat-choice experiments, 25 additional 
butterflies that were released in continuous stretches of habitat, and 29 naturally occurring 
butterflies observed moving through large areas of native habitat. Movement paths ranged from 1 
to 32 moves, with median and mode each being 4 moves. Move lengths varied between habitats, 
with Kolmogorov-Smirnoff (K-S) tests showing significant differences (P < 0.001) between 
mean step lengths for all pair-wise combinations of habitat types with the exception that step 
lengths did not differ between riparian forest and wetland habitats (motility index = 0.150, P > 
0.2; Figure 21). Specifically, the step lengths decreased in order from open (median, 25–75% 
quartiles = 14.2, 7.5–19.5 m) to upland forest (9.0, 5.1–12.9 m) to riparian forest (3.1, 1.5–5.5 m) 
to wetland (2.9, 1.3–6.2 m) habitats. We collected too few data from butterflies in developed 
habitats to include in analyses. ABB turn angles varied among habitats (Figure 22). Turn angle 
distributions were most similar in upland forest habitats (52.5o ± 5.0o [mean ± SE]) and open 
habitats (63.6o ± 7.3o), where movements tended toward greater linearity (i.e., turn angles were 
clustered near 0o). Movement distributions were also similar in riparian forest (79.1o ± 15.7o) and 
wetland habitats (78.8o ± 5.1o), where movements tended toward greater sinuosity. K-S tests 
showed that turn-angle distributions differed significantly between wetlands and both open and 
upland forest habitats (wetland, open motility index = 0.276, P < 0.001; wetland, upland motility 
index = 0.280, P < 0.001). No other comparisons were significantly different. However, the lack 
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of a significant difference in turn-angle distributions between riparian forest and either open or 
upland forest habitats is likely due to a lack of power associated with few (n = 19) turn angles 
available from riparian forest habitats. 

 

Figure 21: Relationship between the probability of entering a given habitat and the motility 
within that habitat (Figure 2 from Kuffler et al. 2010). 

 

The squared displacement rate of ABB was highest in open habitats (estimate, 95% CI: 467 
m2/5-s interval; 95% CI, 273.2–777.3 m2/5-s interval), slightly lower in upland forests (339 m2/5 
s; 95% CI, 260.8–414.4 m2/5 s), nearly one third as large in wetlands (105 m2/5 s; 95% CI, 51.4–
213.8 m2/5 s), and one fourth as large again in riparian forests (24 m2/5 s; 95% CI, 14.7–46.6 
m2/5 s).  

4.3.3 INTEGRATING BOUNDARY BEHAVIOR AND WITHIN-HABITAT MOVEMENT 
Across habitats, movement rate was negatively correlated with the probability of entry (Figure 
21; r = 0.91; df = 3, P < 0.09). Thus our comparison of different matrix habitats illustrates the 
potential importance of nonbreeding habitat in promoting landscape connectivity. In the Fort 
Bragg landscape, wetland and riparian-forest habitats support populations of our focal species, 
and are most frequently selected by butterflies, yet they promote the lowest rates of movement. 
Open fields, by contrast, promote rapid movement, yet butterflies very rarely cross into this 
habitat. Perhaps surprisingly, upland forest may be one of the most important habitat types for 
facilitating dispersal of our focal species among populations across this landscape. Upland forest 
habitats do not support breeding populations of wetland butterflies, yet they promote relatively 
high rates of movement and present a relatively ‘‘permeable’’ boundary. Unlike suitable wetland 
and riparian-forest habitats that account for a very small proportion (< 10%, combined) of the 
landscape, upland forests account for nearly 50% of the landscape. Because upland forest habitat 
has relatively high permeability and rates of displacement (that is, it is the point well above the 
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regression line in Figure 21), and also occupies a large fraction of the landscape, connectivity 
created by this habitat type may be highest. When habitat preference, habitat-specific movement, 
and the natural fragmentation of suitable wetlands are taken into account, the value of breeding 
habitats in promoting landscape connectivity may be relatively low. 

 

Figure 22: Histogram or turning angles and movement of each movement step for experimentally 
released Satyrodes Appalachia (Appalachia brown) butterflies in four dominant natural habitat 
types (figure 1 from Kuffler et al. 2010). 

4.4 AMPHIBIANS 
4.4.1 EMPIRICAL DATA FOR SIMULATION STUDY 
We found no significant differences in turn angle distributions among the three habitat types for 
ornate chorus frogs (Figure 23).  However, step lengths in riparian forest habitat were shorter 
than those in upland forest or open habitats.  Further discussion of the use of these data can be 
found in the simulation section 3.5 Movement Simulations for SFS and Amphibians. 
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Figure 23: Frequency distributions of step lengths and turn angles for adult ornate chorus frogs 
tracked in open habitats, upland forest, and riparian forests that were used in conducting 
movement simulations. 

 

4.4.2 EXPERIMENT 1 
We released 19 juvenile ornate chorus frogs in 4 forest plots and 19 juvenile ornate chorus frogs 
in 4 field plots between 17 May 2010 and 27 May 2010.  An additional 17 juvenile ornate chorus 
frogs were released in raked plots within forested areas between 27 May 2010 and 29 May 2010.  
There was an interaction between larval density and habitat type.  Juvenile frogs raised at low 
densities traveled faster in fields than in forests, and this pattern was reversed for frogs raised at 
high densities (Table 5, Figure Figure 24).  However, there was no effect of larval density on the 
linearity of movement paths in forest and field plots. 

In contrast to the behavioral differences in different habitat types, juvenile frogs moved at similar 
rates in forested areas that were raked or unraked (Table 5).  There was also no effect of raking 
or larval density on the linearity of frog movement paths.  Frogs used in releases at forest and 
field sites from low density tanks were heavier than frogs from high density tanks (t=5.8427, p-
value=0.0215), but frogs released at raked plots show no difference in size due to larval density 
(t=0.0824, p-value=0.9375). 
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Figure 24: Average net distance moved by juvenile ornate chorus frogs reared at low (left) and 
high (right) densities in different habitats when checked at 12-minute intervals.  

Table 5: Two-way ANOVAs comparing the effects of larval density and habitat type on juvenile 
ornate chorus frog movement speed and path linearity. 

Release Experiment  Effect df F p-value 
Forest vs. Field: Movement 

 
    

  Larval Density 1 0.3803 0.5415 
  Habitat Type 1 0.0048 0.9453 
  Larval Density * Habitat Type 1 4.6712 0.0378 
      
Forest vs. Field: Path Linearity     
  Larval Density 1 0.2594 0.6140 
  Habitat Type 1 1.5019 0.2291 
  Larval Density * Habitat Type 1 0.1197 0.7315 
      
Raked vs. Unraked: Movement      
  Larval Density 1 0.3550 0.5557 
  Raking 1 1.4533 0.2374 
  Larval Density * Raking 1 0.5850 0.4503 
      
Raked vs. Unraked: Path      
  Larval Density 1 1.5540 0.2229 
  Raking 1 0.1124 0.7399 
  Larval Density * Raking 1 0.0335 0.8561 
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4.4.3 EXPERIMENT 2 

4.4.3.1 EASTERN NEWTS 
Of the 35 individuals tracked, two were lost during the first five minute interval and therefore not 
used in any analyses. Data from five newts that failed to move at all (four in control plots and 
one in a raked plot) were also discarded, leaving 28 newts for analyses (14 in the control plots 
and 14 in the raked plots). (An ANOVA including the five newts that failed to move also yielded 
the same qualitative result as reported below).  Eastern newts traveled faster in raked plots than 
in control plots (F = 15.85, df = 1,26, p-value = 0.001, Figure 25).  Newts were tracked for a total 
of about four time intervals in the control plots (mean = 22.50 minutes, SD = 9.76) and about six 
time intervals (mean = 32.86 minutes, SD = 13.41) in raked plots, however newts did not move 
different distances per time interval in raked plots (F = 0.99, df = 5,66, p-value = 0.433) or in 
control plots (F = 1.22, df = 5,69, p-value = 0.31).  The average net total distance moved by 
eastern newts was 0.65 m (SD = 0.54) in control plots versus 1.68 m (SD = 1.09) in raked plots. 
Eastern newts traveled further in raked plots than in control plots (F = 9.92, df = 1,26, p-value = 
0.004). For the linearity analysis, we removed data of two additional newts because they were 
lost after only one five minute time interval. Eastern newts moved in less direct paths in raked 
plots than in control plots (F = 4.64, df = 1,24, p-value = 0.04, Figure 25). 

4.4.3.2 ORNATE CHORUS FROGS 
We used movement data from 16 frogs for analyses (seven in control plots and nine in raked 
plots). Ornate chorus frogs did not travel at significantly different speeds in raked plots versus 
control plots (F = 0.70, df = 1,14, p-value = 0.42). Frogs were tracked for a total of about five 
time intervals in control plots (mean = 26.43 minutes, SD = 9.45) and in raked plots (mean = 
25.56 minutes, SD = 8.08). The average net total distance moved by ornate chorus frogs was 
6.08 m (SD = 9.41) in control plots versus 8.52 m (SD = 9.62) in raked plots. Ornate chorus 
frogs did not travel different net total distances in raked plots versus control plots (F = 0.26, df = 
1,14, p-value = 0.62). For the linearity analysis, we excluded data from two individuals that were 
lost after only one five minute time interval. Ornate chorus frogs did not move in significantly 
different paths in raked plots versus control plots (F = 2.98, df = 1,12, p-value = 0.11Figure 26). 

4.4.3.3 SPECIES COMPARISON 
Eastern newts traveled slower than ornate chorus frogs (F = 12.3082, df = 1,42, p-value = 
0.0011), in less direct paths (F = 15.2151, df = 1,38, p-value = 0.0004), and achieved lower net 
total distances (F = 12.7902, df = 1,42, p-value = 0.0009) in roughly the same amount of time (F 
= 0.2407, df = 1,42, p-value = 0.6262). 
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FIGURE 25. Average speed (m/min) traveled by both species in control (unraked) versus raked 
plots. Points displayed represent means and y-error bars are 95% confidence intervals from 
ANOVA.  

 

 
Figure 26: Linearity of paths traveled by both species in control (unraked) versus raked plots. 
Points displayed represent means and y-error bars are 95% confidence intervals from ANOVA. 
Closed circles indicate control treatments, open circles indicate raked treatments. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eastern newt Ornate chorus frog

Unraked Plots Raked Plots

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1

Eastern newts        Ornate chorus frogs

Li
ne

ar
ity

 o
f p

at
h



68 

 

4.4.4 EXPERIMENT 3 
We released 84 newly metamorphosed Carolina gopher frogs and 77 southern leopard frogs into 
enclosures from June to August 2008.  Of these, 68 gopher frogs and 59 leopard frogs were 
recaptured at least once.  Initial habitat choice (the location of the first recapture of an individual) 
was significantly different (p<<0.001) for Carolina gopher frogs, with the majority of animals 
choosing to move into clear-cut (Figure 27).  Southern leopard frogs trended towards the forest 
habitat, however this difference was not significant (p=0.09). 

Gopher frogs moved rapidly into their chosen habitat.  Of the 68 gopher frogs recaptured, 56 
(86.7%) were recaptured at the end of the enclosures.  Animals reaching the end of enclosures 
were defined as having dispersed into that habitat.  The majority of gopher frogs reaching the 
end of enclosures moved there within 1 day (73.2%), with the overall mean time to disperse 
being 1.25 days (Figure 27).  Fewer leopard frogs reached the end of the enclosures, and only 37 
of the 59 (62.7%) recaptured had dispersed.  Leopard frogs were slower to disperse through 
habitats and the mean time to disperse was 2.44 days (Figure 27). 

 

 
Figure 27: The proportion of animals choosing clear-cut habitat (A), and the mean time for 
animals to disperse (B). 
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4.4.5 VERNAL POOL MAPPING 
This backward selection procedure identified distance to streams and elevation as the two 
parameters in the best model for predicting natural wetlands, which reflects the fact that natural 
wetlands in the Sandhills region of North Carolina are associated with ridgetop areas and tend to 
be located farther away from streams.  In contrast to this, the best model for predicting artificial 
wetlands indicated that artificial wetlands were more likely to occur closer to dirt roads and at 
moderate elevations.  Predictive models for natural and artificial wetlands correctly classified 
most sites as wetlands or not wetlands (Figure 28 and Figure 29). 

 

Figure 28:  Receiver operating characteristic curve and area under the curve (AUC) for a 
predictive model of natural wetlands in the study area. 
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Figure 29:  Receiver operating characteristic curve and corresponding area under the curve 
(AUC) for a predictive model of artificial wetlands in the study area. 

Although natural and artificial wetlands that are suitable for amphibians are poorly mapped by 
existing GIS data, we were successful in predicting areas where these sites should occur.  Our 
predictive models showed a good ability to discriminate between sites that were wetlands and 
random sites within the landscape.  We used GIS data that is commonly available throughout the 
state of North Carolina and for many publicly managed lands in the southeastern U.S., so our 
method of predicting wetland sites could easily be transferred to other locations. 

Following field surveys to ground truth predicted wetland sites, we generated a new map of 
suitable wetland habitat for amphibians in our study area.  This map included both natural and 
artificial wetlands, and it provided the locations for suitable breeding habitat that were used in 
both simulation and circuit models of amphibian dispersal. 

4.4.6 DISCUSSION 
Our findings highlight several important lessons for studying movement ecology of amphibians.  
Assessing landscape connectivity for a rare species often involves making assumptions, such as 
that movement rules for a species are habitat specific, that variation in habitat at a coarse scale is 
more important than at a fine scale, and that surrogate species can provide appropriate data for 
use in the place of data on rare species.  Our experiments provide data that contradict these 
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assumptions: juvenile ornate chorus frogs exhibited changes in movement behavior that reflected 
the larval conditions they experienced, movement behavior of adult eastern newts and ornate 
chorus frogs was affected by habitat manipulation at a fine scale within the dominant forest 
habitat type, and juvenile gopher frogs and leopard frogs exhibited preferences for different 
habitat types. 

There are two implications of our findings.  First, much modeling of landscape connectivity is 
based on expert opinion about the resistance of various habitats to dispersal.  These opinions are 
based on assumptions that are unlikely to be met.  One way to determine the consequences of 
these assumptions is through simulation models that assess the sensitivity of model results to 
assumptions.  Additional simulations could examine the effects of changing the complexity and 
distribution of habitat types as well as movement rules for individuals.  Second, our movement 
data likely lead to a conservative assessment of connectivity for amphibians in the Sandhills 
region of North Carolina.  Body size may be positively associated with tolerance to desiccation 
in amphibians, and this could result in individuals of larger species, like tiger salamanders and 
gopher frogs, moving longer distances.  Radio telemetry studies of tiger salamanders and gopher 
frogs conducted in this region have found that tiger salamanders are capable of moving hundreds 
of meters within a night, and gopher frogs have been found in burrows 2 – 3 km away from 
breeding ponds.  Thus, it is possible that rare amphibians are capable of moving substantially 
larger distances than we observed.  Further research will test the correspondence between the 
fine scale movement we measured and larger scale dispersal. 

4.5 DISPERSAL MODELING 
4.5.1 MODEL VERIFICATION USING RESIGHT DATA FOR SFS 
For existing SFS colonies and surveyed upland sites there was a strong positive correlation 
between dispersal probabilities predicted by the simulation and those observed in the mark-
resight study (r=0.824, p<0.001; Figure 30).  The largest discrepancies came from source 
colonies where few marked butterflies were subsequently recaptured (Figure 31), suggesting that 
some of the discrepancy may be simply due to sampling error. The strong overall 
correspondence between the observed moves and the simulation predictions provides validation 
that the simulation is an accurate tool for predicting dispersal within novel landscapes.  
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Figure 30:  Observed vs. predicted dispersal between surveyed SFS colonies.  Each point 
represents the observed dispersal rates of recaptured butterflies during mark-resight surveys 
from 2003-2007 plotted against the predicted dispersal probability from the SFS simulation.  
Only pairs of sites located within the same drainage are plotted.   

 

 

Figure 31:  Magnitude of the difference in the predicted probability and observed dispersal rate 
compared to the number of marked and resighted butterflies from a given source. 

 

4.5.2 MODEL RESULTS 
At Fort Bragg, both SFS and the two amphibian species appear to persist in spatially structured 
networks of distinct breeding sites linked by dispersal (i.e., metapopulations, Figure 32).  
Further, our results strongly suggest that these species will need to be able to persist in such a 
metapopulation structure in areas surrounding Fort Bragg if they are to be established and/or 
managed there in the future. 
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Figure 32: Simulated dispersal paths.  Panels depict the relative use of 30 X 30 m grid cells by 
simulated dispersing a) SFS, b) chorus frogs assuming a 10 day dispersal period, c) chorus 
frogs assuming a 100 day dispersal period, d) gopher frogs assuming a 100 day dispersal 
period and e) gopher frogs assuming a 300 day dispersal period.  In each panel, potential 
source patches are indicated by dark brown surrounded by a “dispersal region” of light brown 
fading into darker browns.  Withing the dispersal region, lighter colors indicate greater use by 
dispersers (i.e., more paths entered the cell).  Panels depicting frog dipsersal are overlaid on a 
map of the study region with different shades indicating different habitats as indicated.  
Because of concerns about revealing the location of SFS breeding sites, panel a) is not overlain 
on a map, and covers only a part of the study region. 

For purposes of managing landscape connectivity for our focal species, we define pairs of sites 
as being linked if an animal leaving one site has at least a 0.01% chance of reaching the other.  
Nearby breeding sites within each network appear to have a relatively high likelihood of being 
connected by dispersal.  SFS sites that are connected by dispersal are all within 300-500 m of 
each other.  Chorus frog sites that are connected by dispersal are all within 100-150 m if the 
dispersal period is 10 days and within 350-400 m if the dispersal period is 100 days.  Gopher 
frog sites that are connected by dispersal are within 2-2.5 km if the dispersal period is 100 days 
and 4-5 km if the dispersal period is 300 days (Figure 33).  For all three species examined 
through simulation, the likelihood of dispersal drops rapidly with the distance from source 
patches.  Although not all breeding sites within a single network necessarily share a direct link, 

a)

d)

b)

e)

c)

open area
upland forest

riparian corridor

dispersal blob

potential 
breeding
habitat



74 

 

all sites within the same network are connected (directly or indirectly) through a continuous line 
of linked sites (e.g. Figure 34). In contrast, sets of nearby core areas that are separated from each 
other by even a few kilometers are likely to be almost completely isolated on a time-scale 
relevant to management.  Rare moves between these sets of core areas may very occasionally 
occur, but such events are probably so unlikely that they should not be considered when 
designing management plans. 
 

 

Figure 33:  Fractions of the movement paths of simulated SFS, chorus frogs (OCF), and gopher 
frogs (CGF) that fell at various distances from the breeding site starting points. Numbers after 
frog identifiers indicate the dispersal period simulated. 
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Figure 34: Heatmaps. A: SFS dispersal within the core area. B: SFS dispersal within the core 
area assuming no rest and 10 hr activity per day.  Boundaries are the same as in A).  Labels 
indicate drainages described in Vogel and Haddad in press. 

Dispersal was influenced both positively and negatively by habitat differences.  We visualized 
the influence of habitat on dispersal potential by plotting habitat use as a function of distance 
from a breeding site.  In this case, our measure of habitat use was the ratio of the percentage of 
migration paths that passed through a particular type of habitat at a given distance from a 
potential source to the percentage of the landscape at that distance composed of that habitat type 
(Figure 35).  For both SFS and the amphibians, open habitat acted as a barrier to dispersal, and 
was used disproportionately rarely compared to its availability in all simulations.  The influence 
of other habitats was species specific.  SFS dispersal was promoted by riparian corridors, but the 
butterfly used upland forest roughly in proportion to its availability (Figure 35).  In contrast 
upland forest promoted chorus frog dispersal while riparian corridors acted as barriers to its 
movement (Figure 35).  Simulated gopher frog dispersal paths (Figure 35) also fell within upland 
forests more frequently than expected based on the availability of that habitat type, especially for 
longer dispersal paths.  The influence of riparian corridors on gopher frog dispersal was more 
complex, but simulated gopher frog dispersal paths generally fell within riparian habitats less 
frequently than expected based on availability of that habitat. 
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Figure 35:  Ratio of relative use to availability of major habitat types vs. distance from source 
for simulated a) SFS, b) ornate chorus frogs and c) Carolina gopher frogs.  Distance is 
measured as the minimum number of cells a disperser would have to cross to reach the focal 
cell from its point of origin. 

4.5.3 DISCUSSION OF SIMULATION RESULTS 
Simulated dispersal probabilities were congruent with field-based measures of SFS dispersal.  
Within drainages, simulated dispersal was extremely limited, especially among sites separated by 
more than 200-300 m  This result is similar to the low dispersal found in mark-resight studies 
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(Haddad et al. 2003-2007) and is consistent with low genetic differentiation among colonies in 
the same drainage but high genetic differentiation among colonies in different drainages (Vogel 
and Haddad in press).  For some pairs of drainages, our simulations suggest that dispersal is even 
more restricted than indicated by genetic structuring.  Increasing the amount of SFS dispersal in 
simulations to three times that expected in the lifespan of an adult SFS yields the prediction of 
connectivity between two of the three drainages which likely experienced recent historic genetic 
exchange (Figure 34). Thus underestimation of adult lifespan could partly explain cases of 
mismatch between simulation estimates of exchange rates and genetic data. Discrepancies in 
connectivity between genetic and simulation studies may be further explained by the presence of 
upstream historic breeding sites lost to succession that would have increased historical gene 
flow.    

4.5.3.1 HABITAT MANAGEMENT  
Our results lead to a few general recommendations for promoting the dispersal of SFS and the 
amphibians in fragmented landscapes at Fort Bragg.  First, because the dispersal abilities of SFS 
and the amphibians are severely limited relative to that of RCW, management of SFS and 
amphibians should focus on promoting dispersal within networks of closely-spaced patches.  
Second, beyond the localized vicinity of a breeding area, stepping stones will be needed to 
promote relatively long-distance dispersal. Stepping stones are locations between existing 
occupied networks that are restored to habitat suitable for SFS or amphibians, and close enough 
to one another and to occupied networks that dispersers can successfully move between them 
(Leidner and Haddad 2010).  To hasten such connection, it may even be necessary to “seed” 
these restored stepping stones with translocated or captive-reared individuals.  Before that is 
attempted, it would be best to determine whether these restored sites are of sufficiently high 
quality to support healthy populations of the target species. Third, perhaps the best way to ensure 
the long-term persistence of SFS and amphibians in the landscape in and around Fort Bragg is to 
increase the number of patch networks (i.e., local metapopulations), which could be 
accomplished through captive rearing and release, through restoration, or both. 

With regard to future restoration and reintroduction in our study area, there are probably more 
easily exploited opportunities to create new networks on Fort Bragg itself rather than off base. 
Because all existing SFS colonies are on base, adding new networks between existing (but 
isolated) networks there has the added advantage of increasing the amount of exchange (both 
demographic and genetic) between existing colonies, which may increase the likelihood of 
overall persistence more than would be expected by simply increasing the number of (isolated) 
networks alone.  If, however, establishing a persistent connection between Fort Bragg and other 
nearby conservation areas (such as the Sandhills Gamelands) is deemed desirable, our results 
suggest that, given the extremely limited dispersal abilities of SFS and amphibians, such a 
connection cannot be accomplished for these species by acquiring widely scattered parcels.  
Instead, true connectivity will likely necessitate a full-scale, continuous corridor that is wide 
enough to allow a series of local networks spanning the areas to be connected. 

The Endangered Species Branch at Fort Bragg is well positioned to use the computer simulation 
we have created as a tool for evaluating potential sites for new restored breeding habitats in and 
around Fort Bragg.  Our field-tested and validated simulations can provide a quantitative 
assessment of whether a proposed site (or network of sites) is likely to be colonized naturally 
from extant populations, or whether a “seeded” population established there is likely to exchange 
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migrants with neighboring existing colonies (or networks).  If there are multiple such proposed 
sites, this quantitative assessment can provide a basis for adjudicating between them. In addition, 
the simulation can be used to predict which site or sites within a newly restored network of 
(initially empty) sites will receive and contribute the most to other sites within the network.  This 
information will be key to deciding which is the best “beachhead” site at which to perform initial 
releases, given financial and/or logistic constraints in terms of the availability of captive reared 
individuals that prohibit all potential or restored sites from being seeded initially.  The simulation 
may be especially useful as a management tool when used in conjunction with other tools, 
including but not limited to Maxent, for locating patches of suitable (or restorable) habitat on the 
landscape, including sites that have potential sites for use as stepping stones.  Moreover, tools to 
evaluate suitable habitat may be used to predict the likely future population size that might be 
attained given the actual amount of suitable habitat at different locations. 

The MATLAB code for the movement simulations can be used to make predictions for other 
species or on other landscapes with the proper input.  The simulations will be maintained for 
future use at the Institute for Wildlife Studies (IWS), Arcata California (www.iws.org). 

4.6 EVALUATING MODEL COMPLEXITY 
4.6.1 MODEL COMPLEXITY FOR RCW 
Euclidean distance was a very poor predictor of prospecting behavior (Table 6). The resistance 
surfaces derived from the four categorical land-cover classes slightly increased our ability to 
predict prospecting behavior (model ranked 48 out of 71). The top 17 models, according to 
AICc, explained prospecting behavior with environmental cues recognized from non-natal 
telemetry locations. This result suggests that environmental variables encountered away from 
roosting territories were a better predictor of prospecting movements than environmental features 
found only at roosting territories. 

The four top-ranked models relating prospecting behavior to environmental variables included 
only forest structure parameters from LiDAR data (cumulative AICc weight > 0.999, Table 6). 
The top-ranked discrete-choice model had a moderate rescaling constant (c = 4) creating a non-
linear function converting forest structure into friction values on the resistance surface. This 
model suggested a negative relationship between probability of visiting a territory and effective 
distance (β = -7.44 x 10-5, SE = 1.347 x 10-5, p < 0.001). That is, within the prospecting range, 
territories with greater effective distances from the roosting site were less likely to be visited 
during forays.  

  

http://www.iws.org/�
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Table 6: The ranking of discrete-choice models describing juvenile female red-cockaded 
woodpecker (Picoides borealis) prospecting behavior in relation to habitat suitability models 
constructed with environmental and occurrence data (in Maxent) along with varying friction 
values converted with rescaling constants (c ) in the Sandhills region of North Carolina. 

  Maxent Model    

Ranka Occurrence 
Data 

Environmental 
Data 

Rescaling 
Constant AICcb ΔAICcc ωd 

1 

Telemetry 

LiDAR 4 5478.580 0.000 0.702 

2 LiDAR 8 5480.341 1.760 0.291 

3 LiDAR 2 5488.054 9.474 0.006 

4 LiDAR 1 5499.407 20.826 0.000 

5 LiDAR + Landsat 2 5509.093 30.513 0.000 

6 LiDAR 0.25 5509.698 31.118 0.000 

7 LiDAR 0.5 5512.346 33.765 0.000 

8 LiDAR + Landsat 1 5513.835 35.255 0.000 

9 LiDAR 16 5519.418 40.837 0.000 

10 LiDAR + Landsat 4 5520.478 41.898 0.000 

15 Telemetry 

All 
Environmental 
data 0.25 5554.001 75.421 0.000 

18 Territory  Landsat 16 5563.018 84.438 0.000 

48 Telemetry 
Land-cover 
Classes 0.5 

5607.292 128.712 0.000 
56 Euclidian Distance (m) 5620.006 141.426 0.000 
a Rank is out of the 71 models, other models in the shaded box with lower rank are identified for purpose of 
discussion  

b Akaike’s Information Criterion adjusted for small sample size. 

c Difference in the value between AICc of the current model and the value for the most parsimonious model. 

d Relative likelihood of the model given the data and set of candidate models (model weights sum to 1.0). 
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Replacing a uniform landscape with a resistance surface often improves animal movement 
predictions (Verbeylen et al. 2003, Magle et al. 2009, Richard and Armstrong 2010). Insight into 
species’ reactions to the environment between habitat patches has been enhanced by increasing 
the complexity of resistance surfaces (Moilanen and Nieminen 2002). Evaluating observed 
movement data in relation to multiple resistance surfaces with varying complexity of 
environmental features and a range of friction values helps identify which environmental features 
influence animal movements (Ricketts 2001, Adriaensen et al. 2003, Beier et al. 2008). For 
example, Verbeylen and colleagues’ (2003) ability to explain red squirrel (Sciurus vulgaris) 
movements with a resistance surface increased with complexity of land-cover data. However, the 
moderately complex landscape predicted the species’ dispersal behavior better than the most 
complex resistance surface. In our study, the simplest models based on Euclidian distance or 
general land-cover classes performed poorly relative to more complex models created with 
remotely sensed data. The best model explaining RCW prospecting behavior focused only on 
forest structure. Adding further environmental complexity to this model did not improve 
performance (Table 6).  

RCW prospecting behavior was best explained by the model developed using environmental data 
from extra-territorial telemetry points recorded during forays of radio-tagged birds. Our study 
suggests that RCWs preferred to travel through forest stands with a tall canopy with minimal 
midstory vegetation and a slightly positively skewed distribution of vegetation heights. These 
environmental characteristics closely correspond to features of preferred foraging habitat, with 
which juveniles would have experience on their natal territories. RCWs prefer to forage in 
canopy trees at least 20 m tall and greater than 60 years old (Rudolph et al. 2002, Walters et al. 
2002), and tend to avoid longleaf pine trees less than 30 years old and 10 m tall (Platt et al. 1988, 
Hooper et al. 1991). According to the top-ranked Maxent model, prospecting individuals used 
areas with an average canopy height of 20 m and avoided forested areas with canopy less than 10 
m high (Figure 14). Foraging RCWs also avoid hardwood vegetation and breeding pairs abandon 
sites with encroaching midstory (Hovis and Labisky 1985, Wood et al. 2008). Our data suggest 
that the probability of detecting a prospecting individual sharply dropped as percent midstory 
vegetation increases and that even a small percentage of midstory cover influences RCW 
movements (Figure 15).  

RCW habitat quality is related to a complex set of forest structure characteristics and is difficult 
to represent with a single variable (Walters et al. 2002). Along with canopy height and midstory 
cover, RCW prospecting behavior was also related to the skewness of the overall distribution of 
vegetation heights. The best Maxent model suggested that prospecting RCW are located in forest 
with a positively skewed vegetation height distribution (Figure 14). The positively skewed 
distribution matches the characteristics of mature longleaf pine forests with a low density of 
points consistently hitting the tall sparse canopy of longleaf pine trees while the majority of the 
points reach the herbaceous understory.  

Most studies that have converted habitat suitability into friction values have used a single 
transform function (Ferreras 2001, Singleton et al. 2004, Richard and Armstrong 2010). 
However, Magle and colleagues (2009) obtained a better estimate of connectivity by adjusting 
the relationship between friction values and habitat suitability with an exponential term. Our data 
also suggest that a non-linear relationship between habitat preference and friction values is a 
better predictor of prospecting behavior than linear transformation. Specifically, the moderate 
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rescaling constant (c = 4) had overwhelming support (ω = 0.70) and the model using this 
conversion was twice as important as the next ranked model with a more extreme rescaling 
constant (c = 8, ω = 0.29; Table 6). The sensitivity between habitat suitability models and 
friction values provides insight into RCW reaction to landscape features during prospecting 
movements. For example, RCW prospecting movements may be slightly impeded by 
environmental factors such as percent midstory cover even in high quality environments (Figure 
15). The resistance surface’s smallest friction values are typically assigned to the entire habitat 
patch without evaluating if the habitat quality varies throughout the patch. Our study suggests 
that even within high quality habitat there are environmental cues that could impede movements.   
More complex dispersal models that incorporate data other than general habitat type may be 
more suitable in these situations. 

4.6.2 MODEL COMPLEXITY FOR SFS 
For all four movement models, the predicted probabilities of dispersal among sites within the 
same drainage were highly (and statistically significantly) positively correlated with observed 
dispersal fractions from the capture-mark-recapture data (Figure 36, Table 7). No marked 
butterfly was observed to move between drainages, and the model-predicted probabilities of such 
movements were zero.  The estimated correlation between observed and predicted dispersal 
fractions was highest for the FS model (the most complex model) and lowest for the DO model 
(the least complex model).  However, the three less complex models produced correlations that 
were only very slightly lower than, and fell well within the 95% confidence interval for, the 
correlation produced by the FS model. Similarly, the log likelihood was highest for the FS model 
and lowest for the DO model, but the likelihoods of the three simpler models were only slightly 
lower than that of the FS model.  Discounting these log likelihoods for the number of parameters 
in each model, the DO model emerges with the lowest AICc value. Thus a strict parsimony 
approach based on the available CMR data favors the simplest model.   
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Figure 36: Scatter plots showing predicted and observed dispersal rates between paired 
surveyed sitesin the capture-mark-recapture study (all years combined).  Each point represents 
the fractions of simulated and observed marked SFS dispersing between a pair of surveyed 
sites, including SFS resighted in the same site where they were originally marked, during a 
single flight period.  The size of the point indicates the number of SFS marked in the breeding 
site (range 1-35). 

Table 7: Measures of fit and cost for simulation models of differing complexity. “Correlation” 
gives the Pearson correlation coefficients (with 95% confidence intervals) between the observed 
fractions of recaptured SFS moving between specific pairs of origin and destination sites in the 
CMR study and the probabilities of dispersal between those site pairs predicted by the four 
movement models. All correlations are significantly greater than zero (one-sided test, P< 0.001).  
Log likelihood is for a multinomial model. 

 Full Simulation No Edge 
Effects 

No Habitat 
Differences 

Distance 
Only 

Correlation 0.824 
  

0.813 
  

0.816 
  

0.811 
  Log Likelihood -357.445 -361.027 -359.621 -364.643 

No. parameters 28 22 13 7 
AICc 775.24 768.72 746.18 743.57 

Marginal costs (U.S. dollars) 10,600 5,800 7,000 2,200 
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The landscape immediately surrounding existing breeding sites has very little open habitat, so 
incorporating the behaviors we have estimated in this habitat and at boundaries between open 
and the other types of habitat into the FS, NE, and NDH models did little to improve their fit to 
the CMR data relative to the DO model.  However, establishing new SFS breeding sites in the 
proposed restored wetlands would put some butterflies in closer proximity to open habitat.  
Consequently, we compared the dispersal predictions among models for the modified future 
landscape with restored wetlands.   

As observed in the landscape without the restored wetlands (spatial maps not shown), for the 
simulations with restored wetlands, all models predicted little or no dispersal between habitat 
patches separated by more than a few hundred meters, such that SFS is predicted to occupy a 
collection of isolated networks containing one or a few nearby breeding sites (Figure 37). 
However, at a smaller scale, predicted dispersal distances and routes differed among models. The 
DO model (without boundary behaviors or habitat-specific movements) predicted the furthest 
distance traveled from breeding sites, with dispersal paths extending out to 480 m from breeding 
sites. Dispersal patterns predicted by the NHD model (with boundary behaviors only) were 
generally similar to those of the DO model.  In contrast, dispersal paths in the FS model (with 
both boundary behaviors and habitat-specific movements)did not extend beyond 360 m from 
sources. The NE model (habitat specific movement rules but no boundary behaviors) predicted 
dispersal patterns similar to those of the FS model.   

Models differed in predicted dispersal rates between the established SFS populations and nearby 
proposed restoration sites.  The DO model predicts relatively high dispersal among proposed 
restoration sites and that most of these sites will be linked to established SFS populations, while 
the FS model predicts relatively low dispersal among proposed restoration sites, with three sites 
completely isolated from any other breeding site, and no dispersal between restored and currently 
occupied sites (Figure 37).  Incorporating habitat effects on movement behaviors leads to the 
greatest reduction in dispersal among most sites, while boundary behaviors act to isolate sites 
separated by open areas or roads (Figure 37).   
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Figure 37:  Predicted dispersal on the managed landscape with added restoration sites.  Each 
panel shows a heat map indicating the frequency at which a cell was crossed during simulated 
dispersal among existing breeding sites (green stars) and proposed restored breeding sites (dark 
blue rectangles within dashed ovals) for the four movement models.  Each pixel represents a 30 
× 30 m cell. Color indicates the relative number of times a cell was crossed during successful 
moves between breeding sites (existing or restored); warmer colors indicate more frequent use.  
Except for breeding sites, areas shaded blue were not used by simulated butterflies, and 
different shades of blue indicate the habitat type of the cell: upland forest (lightest hue, 
indicated by “U” in upper left panel), riparian corridor (next darkest hue, indicated by “R” in 
upper left panel), or open habitats (two darkest hues, indicated by “O” in upper left panel).  
The dashed black lines indicate a dirt road running between a pair of restored sites in the lower 
left of the panels from existing sites above them and between a pair of restored sites in the 
lower right of the panels (indicated by white arrows in the DO panel).   

Since the simulations of the landscape with restoration sites show that more complex models 
may indicate barriers to dispersal that simpler models miss (Figure 37), it is worthwhile to assess 
the financial cost effectiveness of increasing model complexity, which we did by comparing the 
ability of the models to predict the CMR results to the marginal cost of estimating model 
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parameters (Figure 38).  Even though the gain in fit (measured by either the correlation or the log 
likelihood) is small, the marginal cost of achieving that gain is also relatively modest. Moreover, 
there is no sign of diminishing returns, as would be indicated by a plateau in fit with increasing 
marginal cost.  Importantly, because we can only assess model fit on the landscape without 
restoration sites on which the CMR results were obtained, the cost effectiveness of constructing 
more complex models may be higher than this analysis indicates, if it turns out that the more 
complex models accurately predict that open habitat will pose a barrier to dispersal between 
restored and current breeding sites (which can only be evaluated after the restoration has been 
completed).  

 

Figure 38: Measures of model fit vs. the marginal cost of collecting more data to parameterize 
more complex models. 

We obtained different answers to the question “how valuable is it to construct more complex 
models of dispersal through matrix habitats?” depending on how value was assessed.  From a 
strict parsimony viewpoint, the small increase in the ability of more complex models to predict 
the capture-mark-recapture (CMR) results was negated by the substantial increase in the number 
of parameters that had to be estimated before those models could be used.  Thus an information 
criterion approach using the CMR data favors the simplest model we examined.  However, when 
we applied the models to a landscape that had been modified relative to the one on which the 
CMR study was performed, our results suggest that the simplest model may fail to identify an 
important barrier to dispersal, namely a strip of open habitat where a road separates some of the 
proposed restoration sites from other breeding sites (Figure 37). Finally, we found that, although 
the gain in fit to the CMR data with increasing complexity was small, so was the increase in 
financial cost, and greater fit continued to accrue with greater financial cost, suggesting that 
constructing more complex models might be justifiable on financial grounds. In the following 
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paragraphs, we discuss the apparent conflicts between these different views of the conservation 
value of more complex movement models.   

The mismatch between the values of complex models that we found when we assessed value in 
different ways is best understood in terms of the conflict between what is practical and what is 
desirable when managing rare species.  We conducted our CMR study using every known, easily 
accessible breeding site for SFS, an extremely rare butterfly with a highly restricted geographical 
range.  Because dispersal of SFS out of its breeding habitat (wetlands) is extremely limited, the 
marked butterflies in the CMR study only “sampled” a limited proportion of the landscape, 
specifically the region located very close to the existing breeding sites. That region happens to 
have low representation of “open” habitat, as we have classified fields and roads. Movement of 
the surrogate species (Appalachian browns) was very different in open habitats, and individuals 
were reluctant to move into the open when released at the boundary between open and other 
types of habitats (Kuefler et al. 2010). Nevertheless, those details are irrelevant if butterflies 
rarely encounter open habitat, as was the case for the marked butterflies in the CMR study, and 
thus adding complexity to the model by allowing it to account for the consequences of rare 
encounters with open habitat is difficult to justify solely on the basis of a model’s ability to 
predict the CMR results in a parsimonious way.  An alternative approach to our CMR study 
which might have more power to identify the value of complex models would be to capture and 
mark butterflies in the breeding habitat, release them in other locations where they would be 
forced to move through a variety of habitats - including open habitat - while searching for a 
breeding site, and attempt to recapture them at known breeding sites. However, as individuals 
moved from their preferred habitat to less preferred matrix habitats may suffer higher mortality, 
performing such an experiment with an extremely rare butterfly cannot be justified on ethical 
grounds.  

The locations of existing breeding sites restrict the types of matrix habitats butterflies “see” when 
they explore the neighborhood surrounding those sites. However, establishing new breeding sites 
in restored wetlands is a desirable goal in the management of SFS, given that the current number 
of breeding sites is very low, threatening persistence of the metapopulation (and thus the 
subspecies). The most suitable locations for those restored wetlands would put them in closer 
proximity to habitat types, notably open habitat, that are rarer in the vicinity of existing breeding 
sites. Moreover, several of the proposed restoration sites are completely separated from existing 
sites by a strip of open habitat (a road; Figure 38).   

Our results suggest that it may be dangerous to base decisions about which potential restoration 
sites to use solely on the simpler movement model, even if it explains more parsimoniously the 
CMR results.  In particular, more complex models that incorporate documented responses of 
butterflies to open habitat predict that restoration sites separated from existing breeding sites by 
open habitat may experience only very rare exchange of dispersers with existing sites. If the 
goals of restoration are not only to increase the number of local populations but also to increase 
connectivity between them, either to enhance genetic exchange, to allow recolonization of both 
original and restored breeding sites where the local population has gone extinct, or simply to 
increase the chance that restoration sites are colonized naturally once they are established, more 
complex models make different, and perhaps more justifiable, recommendation about locating 
restoration sites than does the distance-only model.  
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For management of SFS, if enhancing connectivity is an aim of restoration, the complex models 
suggest either that potential sites not separated by open habitat from existing sites should receive 
higher priority for restoration, or that open habitat that currently isolates some potential 
restoration sites should be reduced or eliminated (e.g., by rerouting roads) as those sites are 
restored. It is important to note that even in the vicinity of the proposed restoration sites, open 
habitat represents a relatively small proportion of the landscape (although a larger proportion 
than in the neighborhood of existing sites).  Nevertheless, the strong behavioral aversion to open 
habitat that we have documented in earlier work (Kuefler et al. 2010) suggests that it may be 
disproportionately valuable to include such behaviors when predicting dispersal on novel 
landscapes.   

Our results also indicate that an important component to deciding whether or not additional 
complexity is required to accurately model dispersal is an understanding of the match between 
the spatial scale of dispersal and the spatial scale of landscape heterogeneity.  For example, 
limitations on SFS dispersal distances imposed by habitat-specific movement behaviors (reduced 
dispersal in the NE vs. the DO model; Figure 38) occur at a smaller spatial scale than do 
limitations imposed by boundary behaviors (reduced dispersal between the NHD vs. the DO 
model; Figure 37).  Furthermore, neither type of additional model complexity should be expected 
to inform predictions of dispersal between drainages given the current, sparse distribution of 
breeding sites on the landscape; for any movement model, such long-distance dispersal is 
effectively non-existent.  Complex movement models may, however, be better predictors of SFS 
dispersal among breeding sites in areas that are currently inaccessible to us (due to  unexploded 
ordinance) where breeding sites are separated by smaller distances, or of past SFS connectance 
when breeding sites were more common on the landscape.   

4.7 MULTI-SPECIES INTEGRATION 
4.7.1 EVALUATING MODELING STRATEGIES 
Clear differences in predicted dispersal habitat use emerge when comparing our most 
sophisticated individual-based models for SFS and gopher frog to models fit with Circuitscape 
(Figure 39).  Circuitscape models link all populations on the landscape by dispersal, whereas our 
individual-based models suggest that these species have limited dispersal ability.  Our results 
suggest that Circuitscape may not be an appropriate modeling framework for organisms of low 
vagility unless a maximum dispersal distance threshold is specified a-priori. 
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Figure 39: Comparing dispersal habitat use between individual-based models to those generated 
by Circuitscape.  A. Dispersal habitat use for SFS based on the most sophisticated individual-
based model and predicted habitat.  B. Circuitscape model for SFS. C. Individual-based model 
for gopher frog using predicted habitats. D. Circuitscape model for the gopher frog. 

The connectivity of a landscape for species of management concern depends on both the distance 
between potential breeding sites and the habitats forming the intervening matrix.  We find that 
various methods for predicting dispersal perform differently depending on what aspect of 
dispersal is under consideration, but that only movement simulations can fully inform managers 
about both potential dispersal distances and habitat influences on where dispersers are likely to 
travel.  Exponential decay models may be used to predict the distance threshold beyond which 
dispersal is highly unlikely, and fit quite well the decline in simulated movement paths with 
distance (r2=0.988 for SFS).  However, distance models alone cannot account for the influence of 
riparian habitats in enhancing (for SFS) or inhibiting (for chorus frogs) dispersal  (Vogel and 
Haddad 2010, Leidner and Haddad 2010). 

Our approach of combining displacement rates with edge behaviors represents a major step 
forward in developing methods to parameterize circuit models using field data that are feasible to 
collect. Nevertheless, even when parameterized with field data as we have done here, circuit 
models make different predictions about how diverse habitats influence dispersal than do our 
models explicitly simulating movement behaviors on the Fort Bragg landscape for SFS and 
amphibians.  Both models agree that open habitats close to source patches are used relatively 
rarely by both SFS and frogs, and that riparian habitats are relatively frequently used by 
dispersing SFS. However, movement simulations predict increasing use of upland habitats and 
increasing avoidance of open areas by dispersing frogs as they move further from source patches 
(Figure 35), while circuit models predict a decreasing influence of habitat differences with 
distance (all lines converge to and then  vary around unity in Figure 40). 
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Figure 40:  Ratio of relative use predicted by Circuitscape to availability of major habitat types 
vs. distance from source for simulated a) SFS and b) ornate chorus or Carolina gopher frogs.  
Distance is measured as the minimum number of cells a disperser would have to cross to reach 
the focal cell from its point of origin. 

 

4.7.2 SYNERGIES AND TRADEOFFS 
Comparing our most realistic dispersal models on Fort Bragg proper shows that there is 
relatively little congruence between core dispersal areas for our target species (Figure 41).  This 
reflects differences in the habitat requirements of species and their dispersal behavior.  Our 
models of Saint Francis Satyr dispersal suggest that there is little dispersal between wetland 
complexes.  Our amphibian models suggest that, although there may be substantial use of upland 
habitats within 1.5km of breeding sites for at least one species (Carolina gopher frog), dispersal 
between breeding sites that are spatially disjunct is predicted to be rare.  In contrast, our models 
(and long-term mark-recapture data) show that RCW clusters are connected by frequent dispersal 
throughout Fort Bragg. 
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Because it is so extensive, RCW dispersal habitat would provide an “umbrella” for the other 
species in a few areas if all RCW dispersal habitat were to be protected or managed. There is 
some overlap between predicted amphibian dispersal habitat, and RCW dispersal habitat in the 
Macridge Impact Area, along Preachers Road, and near Area O (Figure 42, blue-green shading in 
Figure 41).  In addition, there is a small area that may be important for both RCW and SFS 
dispersal to the west of Mac Ridge Road (Figure 42 and yellow shading in Figure 41).  Despite 
these small areas of overlap, focusing on the most important dispersal areas for RCW will not 
capture the most important dispersal areas for the other species. We anticipate that core dispersal 
areas for the different species can be managed essentially independently in most areas of Fort 
Bragg.  

We identified few spatial tradeoffs in habitat management for connectivity between species. SFS 
dispersal habitats, located along drainages with extensive hardwood floodplains, are areas that 
present some barrier to RCW dispersal, but because these areas are small relative to the amount 
of RCW dispersal habitat, we anticipate no significant decrease in RCW connectivity with 
habitat management or restoration for SFS.  Upland habitats managed for amphibian dispersal 
can also promote dispersal of RCWs, so we anticipate little management tradeoff in areas that are 
important for the dispersal of both RCW and amphibians.  Although SFS and our target 
amphibian species inhabit wetlands, habitats for SFS are spatially segregated from important 
amphibian breeding ponds.  The limited dispersal ability of these species means that there are 
few potential synergies or tradeoffs in habitat management between SFS and the target 
amphibian species. 
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Figure 41:  RGB composite of dispersal habitat use on Fort Bragg for our target organisms, 
Red-cockaded Woodpecker (RCW, green) Carolina Gopher Frog (GF, blue), and Saint Francis 
Satyr (SFS, red). High luminance (brighter colors) represents relatively higher dispersal habitat 
use.  Habitat use maps are based on the most sophisticated model for each species 
incorporating conservative assumptions about dispersal times and distances.  Full base extent 
not shown for data security reasons. See text for additional details. 
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Figure 42:  Reference map for specific locations mentioned in Sections 4.7.2, 4.7.3 and 4.7.4. 

4.7.3 ZONATION CONSERVATION PRIORITIES 
When we used the Zonation algorithm to prioritize areas on Fort Bragg according to their 
connectivity value across all of our target species, the highest priority areas were in the 
immediate vicinity of RCW clusters, in the immediate vicinity of wetlands where SFS occurs, 
and in areas surrounding amphibian-breeding ponds (43).  Because Zonation produces a rarity-
weighted ranking of all areas, dispersal habitat for SFS and Amphibians are prioritized above 
most dispersal habitat for RCWs because habitat for these species is less prevalent. 
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Figure 43: Multi-species dispersal habitat conservation priorities on Fort Bragg from a 
Zonation run that weights each species equally.  Inputs are the most sophisticated dispersal 
models based on known populations and conservative dispersal assumptions. 

4.7.4 OFF-INSTALLATION CONSERVATION PRIORITIES 
A major result of this study is that populations of SFS and the target amphibians have limited 
vagility and probably do not frequently disperse off of the installation itself from known 
populations.  This conclusion is subject to two major types of uncertainties.  First, the survey 
techniques that are used to detect these species are imperfect.  Survey effort has been unequally 
distributed across public and private lands in this region, and there may be populations of the 
target organisms that have not yet been detected.  Second, parameters that describe total daily 
activity times and maximum step lengths are highly uncertain in even our best dispersal models.  
As a result, there may be off-installation areas that contain undiscovered populations of our 
target organisms or are important for infrequent, long-distance dispersal. 

To deal with these uncertainties, we developed alternative dispersal models for our target species 
that are based on predicted, not actual habitat, and that have somewhat relaxed assumptions 
about total activity times and dispersal distances.  These models were developed for a spatial 
window that incorporates all lands within a 5km buffer around Camp Mackall and Fort Bragg.  
Because distributional data for RCWs is considered to be quite complete, we have not used 
predicted habitat for this species. 

The map below (Figure 44) shows an RGB overlay of potential dispersal habitat use for RCWs 
(green), Carolina Gopher Frog (blue) and SFS (red) based on modeled habitat with relaxed 
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assumptions regarding dispersal abilities of the target organisms.  This analysis shows that there 
is some potential for dispersal habitat use by all three species along Drowning Creek east of the 
boundary of Camp Mackall, south of Lake Bay Road along the northern boundary of Fort Bragg, 
and southeast of Long Valley Farm (Figure 42 and 44). Areas near the southern base boundary 
north of Cliffdale Road as well as near the eastern Fort Bragg boundary near McArthur Road 
may be dispersal habitat for both RCWs and amphibians (Figure 42 and 44). Because of the high 
degree of uncertainty involved in basing dispersal models on distribution models, these results 
should be interpreted with care. 

 

 

Figure 44: RGB composite of dispersal habitat off of Fort Bragg for our target organisms, Red-
cockaded Woodpecker (RCW, green) Carolina Gopher Frog (GF, blue), and Saint Francis 
Satyr (SFS, red). High luminance (brighter color) represents relatively higher dispersal habitat 
use. Habitat use maps are based on the most sophisticated model for each species incorporating 
predicted, as well as known habitats and relaxed assumptions about dispersal times and 
distances.  See text for additional details. 
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Figure 45: Zonation-based connectivity conservation priorities for all the species considered 
(A) and Red-cockaded Woodpecker only (B).  Details in the text. 
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Because conservation land-acquisition efforts on private lands have historically targeted areas 
thought to be important for RCW dispersal, we wanted to see how including other species into 
connectivity assessments might change which private lands are considered the most important 
targets for connectivity conservation.  Our dispersal models based on predicted habitat allow us 
to answer this question.  Figure 45 compares Zonation-derived conservation priorities across all 
species (A) to conservation priorities for RCWs only (B) on private lands that are not managed 
explicitly for wildlife.  The maps are similar, but a few key differences emerge when we 
compare the top ten percent of the landscape for the two scenarios (Figure 46).  This shows that 
the RCW-only conservation priority map neglects riparian areas predicted to be SFS dispersal 
habitat along Drowning Creek and its tributaries, and drainages to the north of Fort Bragg, as 
well as some areas along the base boundary that are predicted to be dispersal habitat for 
amphibians, including several areas near the town of Spring Lake and suburban Fayetteville that 
are highly suitable for residential and commercial development (Figure 42 and 46). 

 

Figure 46: Highest-priority dispersal habitats on unprotected private lands for RCW-only 
(green), and the most important habitats across all species (pink). Highest priority areas are the 
top 10% of the landscape selected by Zonation. Light grey areas are at risk of urban or 
suburban development.  See text for additional details. 

4.7.5 DEVELOPMENT SCENARIOS 
The most important dispersal habitats on private lands occur in areas that are highly suitable for 
commercial residential and industrial development as well as areas that are less suitable, as 
judged by the Sustainable Sandhills land-use suitability model and a 2100 urban growth scenario 
(47).  Low priority dispersal habitat was slightly more common on lands that are not at risk of 
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development, and high priority dispersal habitat was slightly more common on lands that are at 
risk.  This is due to the fact that most RCW dispersal habitat is located away from floodplains 
that limit human development.  The dividing line where threatened areas begin having higher 
areal density than non-threatened is approximately the 40th percentile of conservation priority. 
Areas that were above this 40th percentile and were in development-threatened areas are 
excellent candidates for future conservation land acquisitions. 

Our analyses showed a marked difference between areas that were high conservation priority and 
areas that were suitable for development. Based on conservation priority alone, the connections 
between the southwestern corner of Fort Bragg and northeastern corner of Camp Mackall are 
important dispersal habitat, but this area is at lower threat of urban development due to its 
distance from existing infrastructure. Important connectivity habitat that is at a greater threat of 
urban development is much more frequent in the vicinity of Southern Pines / Pinehurst and 
Spring Lake / Fayetteville. Additionally there are two sites north of Fort Bragg that are important 
based on the simulation results.  These areas are key SFS habitat whose predicted habitat is most 
abundant north of Fort Bragg. 

 

Figure 47: Density plot of conservation priority for areas predicted to be threatened and not 
threatened by urban development on private lands surrounding Fort Bragg and Camp Mackall.  
Conservation priorities are based on the full-extent uniformly weighted Zonation output using 
simulation models with relaxed assumptions. 

4.7.6 ACCOUNTING FOR UNCERTAINTY 
The dispersal models that we have generated for this project are subject to a variety of sources of 
uncertainty, and the model predictions reflect different underlying assumptions about the process 
of dispersal for the different organisms.  Although a full accounting of uncertainties in the 
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empirical data, dispersal landscapes, model parameters, and model structure is not currently 
possible, we recognize that some of the largest uncertainties lie in the underlying distributional 
data and our assumptions about the maximum distances that organisms disperse during their 
lifespan.  Because long-distance dispersal events occur infrequently, we are limited in our ability 
to make predictions about the process of long-distance dispersal from observations of routine 
dispersal events (Clark 1998).  As an example, we can predict with some accuracy the territories 
to which juvenile RCWs are likely to disperse if they choose a destination territory within 6km 
of the source.  Beyond 6km however, despite our new understanding of long-distance dispersal 
behavior resulting from the telemetry study, we are unable to predict the destination of 
dispersing RCWs from our models.  Long-distance dispersers appear to be less affected by 
intervening landscape features, and we observed too few of them to be able to model their 
movements. 

To deal with uncertainty in this analysis, we have developed two sets of dispersal models. One 
set relies on known populations of organisms and incorporates conservative assumptions about 
how far animals move.  Another set of models relies on predicted habitats and incorporates 
relaxed assumptions about total dispersal distances and activity times.  The differences in 
dispersal habitat use between these two sets of models give us some sense of how model 
uncertainty affects our major conclusions.   

The “conservative” amphibian model, parameterized for the Carolina Gopher Frog, is based on 
known occurrences and assumes a total activity time of 30 days.  The “conservative” SFS model 
is based on known occurrences and considers dispersal over 100 days with an activity time of six 
hours per day.  The “conservative” RCW dispersal model, which is based on circuitscape, was 
constrained to a maximum dispersal distance of 6km.  The “relaxed” amphibian model, 
parameterized for the Carolina Gopher Frog, is based on predicted occurrences and assumes a 
total activity time of 100 days.  The “relaxed” SFS model assumes 10 hours of activity per day 
and no rest.  The “relaxed” RCW model does not limit dispersal to 6km. 

Figure 48 represents Zonation conservation priorities in the larger study area across all species.  
Dark colors represent areas with small absolute differences in rank between the conservative and 
relaxed scenario, while lighter colors represent areas with larger differences in rank, representing 
relatively greater uncertainty about their importance for preserving landscape connectivity across 
this suite of species.  A high degree of uncertainty is present in areas where dispersal habitat use 
is hypothesized due to predicted occurrence of a single target species, such as predicted SFS 
habitat areas in drainages to the north of Fort Bragg. 
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Figure 48: Connectivity conservation priority areas across all of our target species from a 
Zonation solution that uses our most sophisticated dispersal models with relaxed assumptions.  
Lighter colors represent areas with more uncertainty regarding dispersal habitat use (i.e. greater 
differences in conservation rank between predictions from conservative and relaxed dispersal 
models for each species.  Details in the text. 

4.8 THE CONNECT TOOLBOX 
4.8.1 RATIONALE 
As a major goal of this project, we aimed to provide wildlife managers with tools that they can 
use to better manage DoD lands for wildlife connectivity. The modeling strategies that we 
developed could be applied to imperiled species in many different contexts, however the 
potential barriers to implementing our most sophisticated dispersal models in new sites and new 
species are substantial: First, the individual-based dispersal models that we developed for this 
project are based on years of intensive field study and a large amount of data on both habitat 
requirements and movement behaviors of our target organisms. Wildlife managers need tools 
that they can apply based on the types of data that are more widely available. Second, our most 
complex models require substantial technical expertise to implement. In particular, because they 
are so flexible, individual-based models require users to directly program movement rules in 
software languages. Wildlife managers need tools that they can easily implement without 
specialized computing skills. Finally, these sophisticated models are often too computationally 
intensive to be run effectively on desktop computers in a reasonable amount of time. In order to 
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overcome these challenges, we sought to develop an alternative modeling strategy that addresses 
questions of interest to land managers and package it in a user-friendly decision support tool that 
could be used on and around DoD lands worldwide. 

4.8.2 DEVELOPMENT 
In order to be useful, any software tool must directly address the needs of its users. Because we 
wanted our tool to be useful to land managers and environmental planners on and around 
military bases, before beginning software development we held a series of meetings and 
workshops with members of the North Carolina Sandhills Conservation Partnership (NCSCP), a 
coalition of of public and private conservation stakeholders in the vicinity of Fort Bragg, North 
Carolina. NCSCP stakeholders included members of the Army Environmental Command, the 
Nature Conservancy, the US Fish and Wildlife Service, and others. During these sessions, held 
on January 20th and February 3rd 2010, we asked these stakeholders what questions the tool 
should address and how it could be used. According to our partners, the decision-support tool 
should:  

• interface easily with ESRI ArcGIS, the dominant platform for processing geospatial data.  

• provide a framework for prioritizing landscapes based on multiple criteria.  

• allow planners to compare the impacts of alternative land-management scenarios.  

• fit into an adaptive management framework that allows new data to be integrated as it 
becomes available.  

• integrate with existing planning processes.  

Early in project development, our team concluded that the individual-based modeling strategy 
that we were applying to our target species would be cumbersome to incorporate into a decision-
support tool aimed at wildlife managers. To address the concerns of our stakeholders, we needed 
a computationally efficient strategy for modeling animal movements, a method for prioritizing 
landscapes based on connectivity value and other criteria, and a method for quantifying how 
changes to the landscape influence landscape connectivity that was comparable across species. 
After reviewing the existing literature we selected three existing modeling strategies that met our 
requirements. Circuit theory (McRae et al. 2006) provides a method to incorporate location data 
and habitat maps into simple, flexible models of animal movement. The Zonation algorithm 
(Moilanen et al. 2005) provides an elegant method to prioritize landscapes based on its value to 
multiple species while incorporating other criteria like development threat and acquisition cost. 
Lastly, network routing algorithms from graph theory (Urban and Keit 2001, Minor and Urban 
2008) can be used to measure how changes in land use influence the overall connectivity of 
landscapes. We adapted and extended these existing tools (Figure 49) and incorporated them into 
a new geoprocessing toolbox for ArcGIS called CONNECT.  
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Figure 49: Existing software integrated into the CONNECT toolbox using the Python scripting 
language. 

 

We have continued our close collaboration with SCP stakeholders throughout the development 
of CONNECT. The Nature Conservancy and AEC staff provided crucial feedback on early 
versions of the tools, and we are currently in the early stages of working with the Endangered 
Species Branch staff at Fort Bragg to implement the CONNECT tools for several other species 
of management concern outside of the target species. 

4.8.3 THE CONNECT TOOLS 
The overall work-flow of CONNECT is shown in Figure 50. The tools take as inputs geolocated 
records of a species occurrence and resistance maps that relate animal dispersal probabilities to 
land-cover information from forestry inventories or remotely sensed data. Resistance maps can 
be derived from animal behavior data in a variety of ways including statistical models of 
telemetry data, and / or expert opinion. Using this data and optional supplementary information, 
users can generate maps of relative dispersal density, combine these maps to prioritize 
landscapes for multiple species, and measure the effects of land-use change on landscape 
connectivity. Details of the operation of the CONNECT toolbox can be found in the CONNECT 
USER GUIDE and CONNECT TUTORIAL which are included in the appendices. Here we briefly 
describe the tools and some of the ways that the toolbox can be applied to problems of relevance 
to land management on and around DoD installations. 

 
Figure 50: The CONNECT Tools 

4.8.4 CREATE CONNECTIVITY MODEL TOOL 
This tool models animal movements using Circuitscape, a Python package that implements 
circuit theory. Circuit-based dispersal models assume that dispersing organisms are analogous to 
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electrical current flowing over a landscape composed of conductors with various amounts of 
resistance, represented by a raster dataset. Circuit-based models can be considered an efficient 
analytical equivalent to simple individual-based models known as “biased random walk” models 
(McRae et al. 2008), and allow dispersal corridors and “pinch points”, where animal movements 
are constricted to only a few possible paths, to be mapped quickly and effectively. These models 
also allow us to quantify the relative strength of connections between all habitat patches, based 
on their distance and the quality of intervening habitat. These assessments can be passed along to 
the Generate Landscape Network Tool for further analysis. 

4.8.5 PRIORITIZE LANDSCAPE FEATURES TOOL 
The Prioritize Landscape Features tool combines outputs from dispersal models for multiple 
species into a single landscape prioritization that ranks pixels or parcels according to their value 
across all species using the Zonation algorithm (Moilanen et al. 2005). Optionally, the tool also 
allows users to incorporate land acquisition costs and development threats into the prioritization.  

4.8.6 GENERATE LANDSCAPE NETWORK TOOL 
This tool uses network routing algorithms from graph theory (Minor and Urban 2008) to measure 
connectivity between habitat patches and evaluate the connectedness of landscapes for individual 
species. The tool connects each habitat patch to every other habitat patch with a connection 
(called an edge) that varies in strength according to the effective resistance between those two 
nodes. The tool then calculates the least cost path between all of the nodes. This path, often 
called the Minimum Spanning Tree, represents potentially important connections between 
habitat patches. The tool can also calculate summary statistics for each network that can be used 
to compare habitat management or development scenarios. 

4.8.7 APPLYING THE CONNECT TOOLS 

4.8.7.1 EFFECTIVE CONSERVATION 
Our NCSCP partners recognize that using scarce conservation resources efficiently requires that 
we address four key considerations in prioritizing landscapes for the management of 
connectivity. First, decision-makers must base their decisions on robust assessments of the 
biological value of different parts of the landscape for target species. Effective conservation 
actions will address the parts of the landscape that are most valuable across all target species. 
Second, conservation goals can be achieved most efficiently when cost criteria are also included. 
Efficient conservation actions will target high-value areas that can be managed at the least cost. 
Third, threats to connectivity, including residential and infrastructure development, are higher in 
some areas than others. Conservation actions should target areas of rapid land-use change in 
order to protect important wildlife movement corridors. Finally, many conservation decisions, 
particularly voluntary land acquisitions, are by nature opportunistic. Any planning framework 
must allow decision-makers to take advantage of targets of opportunity. We are designing the 
CONNECT tools to incorporate biological value, cost, and threat criteria, and are promoting its 
use in an adaptive management framework. 

Figure 51 shows how incorporating data on development threats can improve our ability to 
identify priority areas for the conservation of connectivity for multiple species. In the left-hand 
panel, parcels in part of the study area are ranked according to their connectivity value for all 
target species. The highest priority lands are large parcels between Fort Bragg (top-right) and 
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Camp Mackall (bottom-left). Incorporating a development suitability index from Sustainable 
Sandhills into the analysis shifts conservation priorities to adjacent parcels that are near existing 
areas of development (right-hand panel). These parcels have slightly lower connectivity value, 
but are under much greater risk of being developed for commercial or residential use than the 
parcels identified in the first analysis. Landscapes are dynamic, and we expect biological values, 
economic costs, and development threats to change over time. When using the CONNECT tools 
in the ArcGIS ModelBuilder framework, analysis can be saved and updated easily when new 
data on biological value, costs, or development threats become available. 

 
Figure 51: The influence of incorporating development threats into a prioritization of 
connectivity habitat for multiple species. 

4.8.7.2 LAND-USE ALTERNATIVES 
How would the development of new infrastructure projects impact landscape connectivity?  How 
do we choose the habitat restoration projects that will most benefit our target species?  
Answering these two types of questions requires creating alternative dispersal models for each 
scenario that we wish to compare. In this example we show how the CONNECT tools can be 
used to compare the impact of two hypothetical sites for the development of an airfield on 
landscape connectivity for the federally endangered red-cockaded woodpecker (Figure 52). 
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Figure 52: Hypothetical alternative airfield sites. 

Our analysis (Figure 53) begins by developing a resistance map for each landscape scenario. 
Because the landscape already contains an airfield, we assume that the footprint and resistance 
values of the new airfield will be identical to the existing one. These three resistance maps (for 
the baseline, site 1 and site 2) are used to model dispersal in each scenario using the Create 
Connectivity Model tool. In the model output, we see that birds are expected to re-route around 
each potential airfield site, and are unlikely to cross it on a direct path. We then analyze the 
model output using the Generate Landscape Network tool. The connections in the lower three 
panels represent the MST of the habitat network, and their width represents the relative strength 
of the connections between them. The total resistance of the MST is lowest for Site 2, indicating 
that development at Site 2 will have less impact on connectivity than development at Site 1. 

Note that CONNECT evaluates the effect of land use changes on population connectivity, not 
population performance.  Population performance depends on population dynamics within 
habitat patches as well as the dynamics of movement between patches and effects of connectivity 
thereon.  To evaluate the relative impact of the alternative airfield locations on population 
performance would require incorporating the dispersal dynamics represented by CONNECT into 
a Spatially Explicit Population Model (SEPM) for RCWs.  This was accomplished as part of a 
related SERDP project (RC-1472, “A decision support system for identifying and ranking critical 
habitat parcels on and in the vicinity of Department of Defense installations”), as we discuss 
further below. 
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Figure 53: Impact of hypothetical development scenarios on habitat connectivity for the Red-
cockaded Woodpecker on Fort Bragg, NC. 
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5 CONCLUSIONS AND IMPLICATIONS FOR FUTURE 
RESEARCH/IMPLEMENTATION 

5.1 ACHIEVEMENT OF STUDY OBJECTIVES 
Although technology transfer and development of habitat management scenarios is still in 
progress, this study has achieved its five major objectives. 

5.1.1 DEVELOP A FRAMEWORK FOR EVALUATING FUNCTIONAL CONNECTIVITY OF 
LANDSCAPES FOR MULTIPLE SPECIES. 

We have developed a unique framework for assessing functional landscape connectivity for 
multiple species which we believe is general enough to apply to many lands managed by the 
Department of Defense (Figure 54).  Our process begins with selecting a set of target species of 
conservation concern because of issues of habitat isolation or continued fragmentation.  For 
each species, data on current animal distributions and animal dispersal at key life-history 
stages must be collected using a combination of experimental and observational approaches.  
Next we develop maps of landscape attributes that that are important predictors of species 
presence and dispersal behavior, using the best available combination of remotely-sensed data 
and existing on-the-ground inventories.  These environmental data becomes the “dispersal 
landscape” that abstracts key features of the environment that matter to wildlife dispersal.  If 
distributional data is incomplete, then we also use species distribution models to find areas 
that are expected to be important habitats based on environmental covariates and known 
occurrences.  A variety of statistical techniques are used to translate empirical movement data 
into abstract rules that govern how animals move across landscapes, including the amount of 
“resistance” that certain features pose to wildlife dispersal as well as movement times, jump 
lengths, and boundary behavior.   
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Figure 54: Framework for prioritizing lands for management of multi-species connectivity. 

 

Once we have identified key habitat patches, developed the dispersal landscapes, and defined 
sets of movement rules that govern dispersal, we develop and validate dispersal models for 
each species.  The outputs of these models represent the relative prevalence of dispersal habitat 
use for each species in a defined spatial window.  In order to make model outputs comparable 
across species, care should be taken that the models operate on landscapes with similar 
spatial grain and extent. After creating maps of dispersal habitat use for each target species, we 
then use reserve design algorithms such as Zonation to combine dispersal habitat maps and 
identify areas that are most important in maintaining connectivity across the entire suite of 
target species.  These algorithms also give use the opportunity to evaluate spatial synergies and 
tradeoffs in dispersal habitat use across species.  

Each stage of the process generates information that is useful in managing landscapes for 
wildlife conservation.  Collecting movement data itself can suggest management strategies 
because through release experiments and radio-tracking we learn which features of landscapes 
tend to promote dispersal, and which present impassable barriers.  The compilation of occurrence 
data and extrapolation of these data using species distribution models can clarify the habitat 
requirements of each species and suggest areas where further survey work is required. The maps 
of dispersal habitat use for each species suggest core dispersal habitat areas that should be 
managed for different species separately, as well as areas of low dispersal where connectivity 
between habitat patches could be improved.  Multi-species connectivity maps output from a 
reserve design algorithm provide overall assessments of the connectivity value of lands 
across a suite of species. 

Ultimately, we envision this process of multi-species connectivity assessment will exist in the 
context of adaptive management.  Habitat management actions, disturbance, and other changes 
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in land-cover and land-use alter the distributions of organisms as well as the underlying 
landscape attributes that affect dispersal.  Experimental or quasi-experimental habitat 
management can also be used to generate new data on the habitat requirements of the target 
species as well as their movement behavior.  It is critical that, over time, this new information is 
incorporated into dispersal models that can be updated to reflect current conditions or anticipate 
future conditions. 

5.1.2 EVALUATE MODELING APPROACHES FOR LANDSCAPE CONNECTIVITY ACROSS 
SPECIES WITH DIVERGENT LIFE-HISTORY STRATEGIES AND HABITAT REQUIREMENTS 

Evaluating potential modeling approaches for different species, we found that the modeling 
framework and level of complexity that is appropriate for dispersal models varied 
depending on the available data and organism-specific attributes of dispersal behavior.  We 
found that simple models based on Euclidean distance reproduced the major patterns of dispersal 
for amphibian species that were present in the more complex individual-based models, while 
distance-based models performed less well for the Red-cockaded Woodpecker and Saint-Francis’ 
Satyr.  Moderately complex models, based on circuit theory, were most appropriate for RCWs 
because detailed data on dispersal paths were not available.  Finally, individual-based 
simulations were most appropriate for modeling SFS dispersal because of their strong 
preferences for different habitats during dispersal, short activity times, and asymmetric boundary 
behavior. 

5.1.3 IDENTIFY LANDS IMPORTANT FOR MULTI-SPECIES LANDSCAPE CONNECTIVITY 
Because our movement models were created for identical spatial grains and extents, and 
represent similar dispersal timescales relative to the lifespan of our organisms, we were able to 
combine our best movement models for each species using a reserve-design algorithm to identify 
areas that contribute to landscape connectivity across all of our target species.  Our major finding 
in this area is that overlap in core dispersal habitats between the Red-cockaded 
Woodpecker, Saint-Francis Satyr, and our target amphibians probably only occurs in 
small areas on Fort Bragg itself.  A few areas outside those currently managed for wildlife 
have the potential to support long-distance dispersal of multiple species; however these results 
are highly uncertain.   

5.1.4 EVALUATE THE ABILITY OF RED-COCKADED WOODPECKER TO BE A 
“CONNECTIVITY UMBRELLA” FOR THE OTHER SPECIES. 

We found that RCW dispersal habitat is quite extensive on Fort Bragg, and a large proportion of 
the installation’s total area is probably used by dispersing RCWs.  By virtue of its extent, 
dispersal habitat for RCWs does overlap with some areas that are important for other species, 
however, we don’t consider RCWs an adequate “connectivity umbrella” for dispersing SFS and 
amphibians because the most important areas that promote RCW dispersal (the top 20th 
percentile dispersal habitats) show relatively little overlap with important areas for the 
other two species.  Our results suggest that widespread management of RCW dispersal habitat 
will facilitate dispersal of other longleaf-pine associated species, but focusing on the areas that 
are most important for RCW dispersal will likely neglect the dispersal needs of other organisms 
with divergent distributions, habitat requirements and dispersal biology. 
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5.1.5 DEVELOP STRATEGIES THAT ALLOW FOR EASY TESTING OF MULTIPLE HABITAT 
MANAGEMENT SCENARIOS. 

The number of potential habitat management scenarios on and surrounding Fort Bragg is large, 
and our most sophisticated dispersal models are not well-suited to exploring large numbers of 
habitat management options because they are computationally intensive and require specialized 
expertise to implement. Because of these limitations we have developed an alternative 
connectivity modeling strategy, and a piece of end-user software that implements it, called 
“CONNECT”. CONNECT is a GIS toolbox that allows wildlife managers to use limited data to 
assess the degree and spatial configuration of important dispersal habitats for multiple species.  
We are currently working with managers on Fort Bragg to develop alternative management 
scenarios for our target species and training them to use CONNECT to evaluate the influence of 
those management scenarios on landscape connectivity. 

5.2 RECOMMENDATIONS FOR CONSERVATION 
5.2.1 MULTI-SPECIES MANAGEMENT RECOMMENDATIONS 
Except in small areas of overlapping dispersal habitat use, described above, we recommend that 
connectivity for Red-cockaded Woodpecker, Saint-Francis’ Satyr, and the target amphibians 
should be managed independently.  Local actions that are taken to protect and restore 
connectivity within local networks of SFS and amphibian habitats are unlikely to either 
significantly hinder or promote landscape-scale connectivity for RCWs.  Conversely, 
management actions that are taken to promote connectivity between RCW breeding clusters, 
such as prescribed burns, longleaf pine restoration, or stand improvement, are unlikely to directly 
promote or adversely affect dispersal of SFS or amphibians unless they affect areas in the 
immediate vicinity (<~1.5 km) of breeding sites. 

For the species with relatively poor dispersal ability (SFS and amphibians), rare dispersal 
between local networks will likely be due to a different type of dispersal process (e.g., storm 
winds for butterflies, flooding for amphibians) than is responsible for “routine” dispersal 
between colonies in the same network.  Because such events are likely to be extremely rare, it is 
difficult to observe their mechanism or estimate their frequency.  Basing a management strategy 
on such unpredictable events would be unwise.  Instead, we advocate a strategy of establishing 
new local networks between intervening ones in order to restore landscape-wide 
connectivity for dispersal-limited species.  

In contrast, managing current dispersal habitats at the landscape scale should suffice to maintain 
a high level of interconnectedness within the RCW population on Fort Bragg.  Our work has 
shown that the intervening landscape does hinder dispersal between Fort Bragg and 
surrounding populations in Southern Pines / Pinehurst, the Sandhills Gamelands, and 
between RCW clusters in the Overhills and Murchison Road areas on Fort Bragg.  These 
findings provide a mechanistic explanation of previously documented patterns of dispersal of 
RCWs between different parts of the Sandhills. Significant opportunities exist for conserving 
additional extant dispersal habitat in intervening areas, and restoring additional areas that 
promote dispersal for this species.  

Much of DoD’s efforts to promote off-installation wildlife habitat conservation in the landscape 
surrounding Fort Bragg and Camp Mackall have focused on securing breeding, foraging, and 
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dispersal habitats for RCWs. A central goal of our study was to evaluate whether RCW-centric 
evaluations of connectivity habitat also capture valuable dispersal habitats for other species.  We 
have concluded that, although there are some private lands important for promoting the 
dispersal of RCWs that might also be used by our other target species, the most important 
dispersal areas for these species on private lands would be neglected by focusing solely on 
RCWs.  In particular, areas north of the Fort Bragg boundary have the potential to be important 
habitats for threatened amphibians and SFS, but are probably not important for promoting RCW 
dispersal. Likewise areas along Drowning Creek are potential dispersal habitats for amphibians, 
but the hardwood forests on the floodplain of Drowning Creek probably constitute a mild, 
natural dispersal barrier for RCWs. 

5.2.2 CONTRIBUTIONS TO KNOWLEDGE OF DISPERSAL BEHAVIOR FOR EACH SPECIES  
Previously existing models depicting RCW population dynamics have included no information on 
the species response to landscape features, portraying dispersal as simple functions of distance 
(Letcher et al. 1998, Schiegg et al. 2002, Pasinelli et al. 2004, Schiegg et al. 2005).  Our results 
show that RCW movement is strongly inhibited by open areas.  We further found that RCW 
prospecting and dispersal movements were best explained by detailed forest structure features that 
closely corresponded to foraging habitat characteristics. Specifically, RCWs prefer to pass through 
forests stands with an average canopy height of approximately 20 m, and less than 20% midstory 
cover. RCW movements were also moderately reduced through forested areas with abundant 
midstory cover and developed areas. We were able to empirically estimate RCWs response to 
landscape features at a regional scale by combining radio-telemetry data during prospecting 
behavior and LiDAR data.  With this greater understanding of RCW response to detailed 
landscape features we have greater confidence predicting the flux of individuals between 
territories and overall P. borealis connectivity.  Avoidance of habitat gaps, the previously 
undescribed foraying behavior of juveniles and the also previously unknown long-distance 
jumping behavior of RCWs (Kesler et al. 2010) all were incorporated into an RCW SEPM as 
part of the companion project RC-1472.  This resulted in a much improved, individual-based 
RCW population model that includes interaction with the landscape during dispersal. 

Our studies of amphibian movement behavior demonstrated the importance of testing implicit 
assumptions of connectivity studies with field data.  We showed that common species may not 
provide an appropriate surrogate for rare species, even when putative surrogate species are 
closely related.  We also found that movements of species can be as strongly affected by 
understory vegetation as they are by canopy structure.  Finally, we showed that the conditions 
experienced by amphibian larvae may have carryover effects on their movement behavior after 
they have completed metamorphosis.  The influence of the spatial pattern of habitats on 
connectivity is especially important to investigate since habitat specific resistance values could 
be affected by the factors we investigated. While these findings highlight the need for sensitivity 
analyses, our studies suggest that rare amphibian populations in our study area are likely isolated 
from other suitable unoccupied habitat. 

Little was known about SFS dispersal behavior before this study was initiated.  Our release 
experiments with a surrogate species and movement modeling have highlighted important facets 
of SFS movement that can be used to guide management for this species.  First, the connectivity 
between patches of SFS habitat (e.g. probability > 0.01 of a dispersing individual reaching 
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another habitat patch), is likely restricted to patches within a few hundred meters of each other.  
Surprisingly, we found that the most important habitats facilitating dispersal were upland areas 
where movement rates were rapid relative to breeding habitat (wetlands).  Open areas appear to 
be strong barriers to dispersal.  Overall our results indicate that management or restoration of 
connectivity for this species should be focused on increasing the number of local networks of 
habitat patches near existing breeding populations.  

5.3 CONTRIBUTIONS TO MULTI-SPECIES CONNECTIVITY THEORY 
Our study outlines the differences between structural and functional connectivity (sensu 
Tischendorf and Fahrig 2000).  A standard structural approach is to develop a map that considers 
discrete habitat patches surrounded by a matrix of non-habitat and evaluate connectivity using 
the Euclidean distance between habitat patches (Minor and Urban 2008).  Often, patches are 
divided into local networks based on a distance criterion that represents the maximum distance 
likely to be traversed by the least vagile species of concern (Hall 2008).  This leads to a focus on 
dispersal between local habitat patches and gives little information about how the intervening 
matrix between those patches is used by dispersing organisms and provides little basis for 
suggesting how these intervening dispersal habitats should be managed. A multi-species 
approach that follows our framework will allow wildlife managers to identify dispersal habitats 
that are important for different suites of species, and manage the matrix appropriately. 

Multi-species habitat assessment and conservation planning has generally followed one of two 
approaches: analyses of “biodiversity hotspots” or identification of “umbrella species”. 
Biodiversity hotspot studies attempt to identify areas that are inhabited by multiple species of 
conservation concern, generally endemic species, rare species, or those that are threatened by 
human activity (Reid 1998, Meyers et al. 2000).  These analyses rarely incorporate connectivity 
between habitats (but see Lehtomäki et al. 2009) and thus may miss dispersal corridors that are 
important for maintaining population persistence.  Our approach builds on this existing 
framework and identifies “dispersal hotspots” that may not provide primary habitat for many 
species, but nonetheless permit their dispersal through patches of such habitat in fragmented 
landscapes. 

Studies that identify umbrella species (Fleishman et al. 2000, Roberge and Angelstam 2004) 
attempt to find a single species, or a small set of species, whose needs can be used to guide 
management for a larger group of species for which there is less information.  Central to the 
umbrella species concept is that the most important habitats for potential “umbrellas” also 
provide good habitat for other species.  Generally, umbrella species have been selected based on 
rarity (Nieme et al. 1997), patterns of co-occurrence (Fleishman et al. 2000), or presumed key 
roles in important ecosystem processes.  We wanted to see if red-cockaded woodpeckers, often 
considered an umbrella species for conservation in this region, provide a good umbrella for the 
management of key dispersal habitats for longleaf-pine associated species with divergent life 
histories and dispersal biology.  Although current SERDP research elsewhere indicates that 
RCWs are an effective habitat umbrella for promoting avian diversity in longleaf systems 
(Defense Coastal / Estuarine Research Program, Research Project T-2), our assessment shows 
that RCWs do not provide an adequate “dispersal umbrella” for the suite of species considered in 
this study.  However, the methodology that we have developed could be used to empirically 
evaluate whether any given species could serve that role. 
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5.4 LIMITATIONS AND NEXT STEPS 
Although we envision that using our framework will allow for empirical evaluation of functional 
connectivity for multiple species and will be useful in guiding connectivity management around 
Fort Bragg and elsewhere, we have identified several key limitations of our work.   

First, our analysis has been focused on dispersal through the matrix between primary habitats, 
not on the primary habitats themselves.  The relative importance of primary or “core” habitat 
areas and dispersal habitats in promoting population persistence depends on both dispersal 
dynamics between core habitats and population dynamics within core habitats (Theodorou et al. 
2009).  Our most sophisticated dispersal models do not incorporate population dynamics, and 
thus are inadequate for answering these types of questions. Incorporation of detailed dispersal 
dynamics into Spatially Explicit Population Models (SEPMs) could allow researchers to 
investigate the population-dynamic consequences of limited dispersal and evaluate the influence 
of different habitat management options on population persistence and recovery.  This has been 
done previously for RCWs in the Fort Bragg landscape, but the SPM employed did not include 
effects of the landscape on movement, but rather portrayed dispersal as a simple function of 
distance (Walters and Crowder 2002, Scheigg and Walters 2005). The detailed dispersal 
dynamics we documented for RCWs were incorporated into this SEPM as part of RC-1472.  
However, insufficient demographic data currently exist to parameterize this type of model for the 
other species that we considered in this study.  We consider linking empirically-parameterized 
dispersal models with SEPMs a primary avenue for future research. 

Second, our simulations omitted some biological details for which we lacked data. For example, 
for SFS we assumed that the mortality rate of butterflies was not influenced by the habitat in 
which they were located; we assumed all had the life expectancy we had estimated for butterflies 
in their breeding habitat (wetlands) using capture-mark-recapture data. Butterflies in open, sunny 
habitats may have a higher mortality rate than we estimated, which may render open habitat an 
even more impervious barrier to dispersal than our simulation results would suggest. Ethical 
considerations preclude direct measurement of mortality rates for threatened SFS in non-
breeding habitat, but comparing mortality of SFS and ABB in wetlands and of ABB in other 
habitats, and then extrapolating the species difference from wetlands to other habitats represents 
one possible way forward. Our simulations for SFS and the amphibians also omit more subtle 
movement responses to habitat characteristics (such as tree cover or abundance of downed logs), 
because we treated all habitat in each type (such as upland forest) as homogeneous. With 
additional movement data and finer-scale landscape information, more sophisticated movement 
models may someday be constructed.  

Third, the dispersal events with the largest biogeographic, genetic and evolutionary 
consequences are likely to be rare, long-distance events.  These events may not share a common 
mechanism with the “routine” dispersal events that we used to parameterize spatially explicit 
dispersal models for each species (Nathan 2006).  Indeed we documented that in RCWs they do 
not, as long-distance dispersers engaged in jumping differ in behavior and their reaction to the 
landscape from short-distance dispersers engaged in forays.  Our models are biased towards 
dispersal behavior that is common enough to observe directly.  Long-distance dispersal events 
between local networks of amphibian breeding ponds and SFS wetland habitats may occur 
infrequently due to extreme events or other mechanisms that promote long-distance dispersal.  
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Although challenges to direct measurement of these long-distance dispersal events are extreme, 
there is some potential to estimate long-term rates of immigration and emigration between 
isolated populations using landscape genetic analyses (Lowe and Allendorf 2010).   

Much of our work has focused on collecting empirical data on wildlife dispersal, developing 
environmental datasets that map aspects of the landscape relevant to dispersing organisms, 
parameterizing dispersal models for a variety of different species, and showing how key 
dispersal areas for each species relate to each other spatially.  We see testing a variety of land-
use change scenarios as a key next step in this project.  A thorough analysis would incorporate 
both on-installation habitat management and off-installation landscape change. For example, 
there is some ambiguity about whether longleaf pine restoration efforts associated with Long 
Valley Farm and Carver’s Creek State Park will be sufficient to counter reductions in 
connectivity caused by continued rapid urban growth in greater Fayetteville.  Using our 
connectivity modeling toolbox, we will incorporate restoration plans for Long Valley Farm, 
Carver’s Falls, and an urban growth model (Jantz et al. 2010) to establish anticipated 
connectivity trends with and without restoration and suggest areas where further restoration of 
longleaf pine communities can best benefit habitat connectivity for RCWs. 

Many of our overall conclusions are contingent on the species that we selected for study.  A 
different suite of organisms might lead us to a different set of conclusions.  There is some 
latitude to broaden taxonomic scope of the analysis in the future and incorporate other longleaf-
pine associated species of management importance such as Bachmann’s sparrow (Aimophila 
aestivalis) and pine snake (Pituophis melanoleucus) as well as species of recreational importance 
such as bobwhite quail (Colinus virginianus). 
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APPENDIX A 

ADDITIONAL/SUPPORTING MATERIALS 
 
I. CONNECT 
This report is bundled with a public beta version of the CONNECT toolbox.  CONNECT is a 
set of GIS tools that helps researchers and conservation planners model landscape 
connectivity for multiple wildlife species in complex heterogeneous landscapes. CONNECT 
also allows users to combine single-species models of animal movement to identify areas of 
the landscape that facilitate the movement of multiple species. CONNECT can be used to 
support the design of nature reserves, facilitate land management, or examine the effects of 
land-use change on animal movements.  
 
CONNECT packages three cutting-edge connectivity modeling and conservation planning 
tools, Circuitscape (McRae et al. 2008), NetworkX (Hagberg et al. 2009), and Zonation 
(Moilanen et al. 2008) into a user-friendly geoprocessing toolbox for ESRI ArcGIS 9.3. 
Using the CONNECT tools in the ArcGIS ModelBuilder environment allows users to 
incorporate animal movement models into larger workflows and use the tools iteratively to 
assess the impact of model assumptions and evaluate multiple conservation scenarios. 
 
The CONNECT  Toolbox contains four major tools: 
 

• Standardize Datasets. This tool takes a group of raster datasets or feature classes and 
converts them to ASCII rasters, all with the same extent and cell-size. This tool is 
used to easily prepare inputs for use in the other tools. 

 
• Create Connectivity Model. This tool creates animal movement models using 

Circuitscape. In mapping mode, this tool takes habitat locations and a map of the 
landscape's resistance to animal movement and generates a map of likely dispersal 
corridors between habitat patches. In modeling mode, this tool takes the same inputs, 
but instead of generating a map of dispersal corridors, the tool outputs pairwise 
calculations of the resistance distance between all habitat patches. These calculations 
are later used to generate a graph of habitat patches using the Generate Landscape 
Network tool. 

 
• Generate Landscape Network. This tool takes pairwise calculations of resistance 

distance created by the Create Connectivity Model Tool and creates a landscape 
network using NetworkX. Various statistics are computed for the network, including 
the graph diameter, minimum spanning tree, and betweenness centrality of each node. 
Feature classes representing nodes and edges are output to a geodatabase from this 
tool, and graph statistics are output to a text file. 

 
• Prioritize Landscape Features. This tool combines dispersal corridor maps for 

multiple species into a single landscape prioritization using the Zonation algorithm. 



II 

 

Optionally, the user can input maps representing planning units, economic costs, or 
conservation threats into the analysis. The output from this tool is a map of 
conservation priority rankings, either by pixel or by planning unit / parcel. 

 
A user-guide and tutorial, along with sample datasets, are also included with CONNECT. 
 
II. MAPS 
Raster-based maps of dispersal habitat use and multi-species habitat priorities that were 
created for this project are attached in an ASCII raster format that can be imported into most 
desktop GIS programs. These datasets cover the two spatial extents displayed in Figure 2.  
The following datasets are included: 

 

Table i: Maps of simulated dispersal habitat use delivered with the SERDP-RC 1471 final 
report. 

Fort Bragg Extent, Recorded Occurrences (file path “dispersal_maps\ft_bragg”) 
Dataset name Details 

gfusematftbragg10kN100t30days.asc Average of 100 replicate runs of a gopher frog simulation with a 
travel time of 30 days. 

gfusematftbragg10kN100t100days.asc Average of 100 replicate runs of a gopher frog simulation with a 
travel time of 100 days. 

ocfusematbragg10kN100t30days.asc Average of 100 replicate runs of an ornate chorus frog simulation 
with a travel time of 30 days. 

ocfusematftbragg10kN100t100days.asc Average of 100 replicate runs of an ornate chorus frog simulation 
with a travel time of 100 days. 

RCW_circ6kmthresh_ftbragg.asc RCW Circuitscape model with a maximum dispersal distance of 
6km. 

sfsDispersalSimulationFtBragg.asc Dispersal simulation for SFS on Fort Bragg. 

tsusematftbragg10kN100t100days.asc Average of 100 replicate runs of a tiger salamander simulation with a 
travel time of 100 days. 

tsusematftbragg10kN100t30days.asc Average of 100 replicate runs of a tiger salamander simulation with a 
travel time of 30 days. 

Full Study Extent, Modeled Occurences (file path “dispersal_maps\full_extent”) 
Dataset name Details 

GF_usemat100_v4.asc Gopher frog simulation with an activity time of 100 days. 

GF_usemat300_v4.asc Gopher frog simulation with an activity time of 300 days. 

RCW_circuitscape_6km_thresh.asc RCW Circuitscape model with a maximum dispersal distance of 
6km. 

SFS_usemapNR285_v4.asc Extreme SFS dispersal simulation with 10 hours of activity time per 
day and no rest. 
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Table II: Maps of dispersal habitat conservation priorities delivered with the  SERDP-SI 
1471 final report. 

Dataset name Details 
ftbragg_zonation_allspp.asc Zonation conservation priority map for Fort Bragg that 

weights dispersal habitat maps for RCW, SFS, and 
Gopher Frog equally. Units are percentile rank (e.g., 
0.90 is a cell that is ranked higher than 90% of the 
other cells. 

fullextent_zonation_allspp_protectedmask.asc Zonation conservation priority map for the full study 
extent that masks currently protected lands. Inputs to 
zonation are dispersal simulations with relaxed 
dispersal assumptions. 

fullextent_zonation_conservative_existingpops.asc Zonation conservation priority map for the full study 
extent. Inputs to Zonation are dispersal simulations 
based on existing population with conservative 
assumptions. 

fullextent_zonation_rcw_protectedmask.asc Zonation dispersal habitat priorities on unprotected 
private lands for RCW-only. 

fullextent_zonation_relaxed_modeledpops.asc Zonation conservation priority map for the full study 
extent. Inputs to Zonation are dispersal simulations 
based on modeled populations with relaxed dispersal 
assumptions. 
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